Differential Gene Expression in Response to Salinity and Temperature in a Haloarcula Strain from Great Salt Lake, Utah
نویسندگان
چکیده
Haloarchaea that inhabit Great Salt Lake (GSL), a thalassohaline terminal lake, must respond to the fluctuating climate conditions of the elevated desert of Utah. We investigated how shifting environmental factors, specifically salinity and temperature, affected gene expression in the GSL haloarchaea, NA6-27, which we isolated from the hypersaline north arm of the lake. Combined data from cultivation, microscopy, lipid analysis, antibiotic sensitivity, and 16S rRNA gene alignment, suggest that NA6-27 is a member of the Haloarcula genus. Our prior study demonstrated that archaea in the Haloarcula genus were stable in the GSL microbial community over seasons and years. In this study, RNA arbitrarily primed PCR (RAP-PCR) was used to determine the transcriptional responses of NA6-27 grown under suboptimal salinity and temperature conditions. We observed alteration of the expression of genes related to general stress responses, such as transcription, translation, replication, signal transduction, and energy metabolism. Of the ten genes that were expressed differentially under stress, eight of these genes responded in both conditions, highlighting this general response. We also noted gene regulation specific to salinity and temperature conditions, such as osmoregulation and transport. Taken together, these data indicate that the GSL Haloarcula strain, NA6-27, demonstrates both general and specific responses to salinity and/or temperature stress, and suggest a mechanistic model for homeostasis that may explain the stable presence of this genus in the community as environmental conditions shift.
منابع مشابه
Correction: Almeida-Dalmet, S.; et al. Differential Gene Expression in Response to Salinity and Temperature in a Haloarcula Strain from Great Salt Lake, Utah. Genes 2017, 9, 52
The authors wish to make the following changes to their paper [1].[...].
متن کاملSalinity and nutrients influence species richness and evenness of phytoplankton communities in microcosm experiments from Great Salt Lake, Utah, USA
Harsh environments are typically characterized by some dominant variable limiting diversity, making them interesting systems for studying how species diversity patterns change with abiotic conditions. Several environmental factors with the potential to influence phytoplankton diversity in hypersaline lakes were examined with microcosm experiments using inoculum from the Great Salt Lake, Utah. E...
متن کاملNetwork-based transcriptome analysis in salt tolerant and salt sensitive maize (Zea mays L.) genotypes
Identification of genes involved in salinity stress tolerance provides deeper insight into molecular mechanisms underlying salinity tolerance in maize. The present study was conducted in the faculty of agriculture of Urmia university, Iran, in 2018, with the aim of identifying genetic differences between two maize genotypes in tolerance to salinity stress, and the results of gene expression wer...
متن کاملExpression pattern analysis of transcription factors from Aeluropus littoralis in response to salt stress and recovery condition.
Salinity is one of the most important abiotic stresses that decrease crop production. Transcription factors (TFs) are prominent regulators in plant responses to abiotic stress. In the present study, the expression pattern of four salt-induced genes encoding transcription factors, namely, MYB, RF2, GTF, and ARID was studied in response to salt stress (sodium chloride) and recovery conditions. Th...
متن کاملHalorhabdus utahensis gen. nov., sp. nov., an aerobic, extremely halophilic member of the Archaea from Great Salt Lake, Utah.
Strain AX-2T (T = type strain) was isolated from sediment of Great Salt Lake, Utah, USA. Optimal salinity for growth was 27% (w/v) NaCl and only a few carbohydrates supported growth of the strain. Strain AX-2T did not grow on complex substrates such as yeast extract or peptone. 16S rRNA analysis revealed that strain AX-2T was a member of the phyletic group defined by the family Halobacteriaceae...
متن کامل