Mammalian DNA polymerase alpha holoenzymes with possible functions at the leading and lagging strand of the replication fork.

نویسندگان

  • H P Ottiger
  • U Hübscher
چکیده

At an early purification stage, DNA polymerase alpha holoenzyme from calf thymus can be separated into four different forms by chromatography on DEAE-cellulose. All four enzyme forms (termed A, B, C, and D) are capable of replicating long single-stranded DNA templates, such as parvoviral DNA or primed M13 DNA. Peak A possesses, in addition to the DNA polymerase alpha, a double-stranded DNA-dependent ATPase, as well as DNA topoisomerase type II, 3'-5' exonuclease, and RNase H activity. Peaks B, C, and D all contain, together with DNA polymerase alpha, activities of primase and DNA topoisomerase type II. Furthermore, peak B is enriched in an RNase H, and peaks C and D are enriched in a 3'-5' exonuclease. DNA methylase (DNA methyltransferase) was preferentially identified in peaks C and D. Velocity sedimentation analyses of the four peaks gave evidence of unexpectedly large forms of DNA polymerase alpha (greater than 11.3 s), indicating that copurification of the above putative replication enzymes is not fortuitous. With moderate and high concentrations of salt, enzyme activities cosedimented with DNA polymerase alpha. Peak C is more resistant to inhibition by salt and spermidine than the other three enzyme forms. These results suggest the existence of a leading strand replicase (peak A) and several lagging strand replicase forms (peaks B, C, and D). Finally, the salt-resistant C form might represent a functional DNA polymerase alpha holoenzyme, possibly fitting in a higher-order structure, such as the replisome or even the chromatin.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coordinated DNA Replication by the Bacteriophage T4 Replisome

The T4 bacteriophage encodes eight proteins, which are sufficient to carry out coordinated leading and lagging strand DNA synthesis. These purified proteins have been used to reconstitute DNA synthesis in vitro and are a well-characterized model system. Recent work on the T4 replisome has yielded more detailed insight into the dynamics and coordination of proteins at the replication fork. Since...

متن کامل

Replication of the lagging strand: a concert of at least 23 polypeptides.

DNA replication is one of the most important events in living cells, and it is still a key problem how the DNA replication machinery works in its details. A replication fork has to be a very dynamic apparatus since frequent DNA polymerase switches from the initiating DNA polymerase alpha to the processive elongating DNA polymerase delta occur at the leading strand (about 8 x 10(4) fold on both ...

متن کامل

Timing, Coordination, and Rhythm: Acrobatics at the DNA Replication Fork*

In DNA replication, the antiparallel nature of the parental duplex imposes certain constraints on the activity of the DNA polymerases that synthesize new DNA. The leading-strand polymerase advances in a continuous fashion, but the lagging-strand polymerase is forced to restart at short intervals. In several prokaryotic systems studied so far, this problem is solved by the formation of a loop in...

متن کامل

Dividing the workload at a eukaryotic replication fork.

Efficient and accurate replication of the eukaryotic nuclear genome requires DNA polymerases (Pols) alpha, delta and epsilon. In all current replication fork models, polymerase alpha initiates replication. However, several models have been proposed for the roles of Pol delta and Pol epsilon in subsequent chain elongation and the division of labor between these two polymerases is still unclear. ...

متن کامل

Chromosomal replicases as asymmetric dimers: studies of subunit arrangement and functional consequences.

Studies of the DNA polymerase III holoenzyme of Escherichia coli support a model in which both the leading and lagging strand polymerases are held together in a complex with the replicative helicase and priming activities, allowing two identical alpha catalytic subunits to assume different functions on the two strands of the replication fork. Creation of distinct functions for each of the two p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 81 13  شماره 

صفحات  -

تاریخ انتشار 1984