Fabrication and characterization of CMOS- compatible integrated tungsten heaters for thermo-optic tuning in silicon photonics devices

نویسندگان

  • Adil Masood
  • Marianna Pantouvaki
  • Danny Goossens
  • Guy Lepage
  • Peter Verheyen
  • Joris Van Campenhout
  • Philippe Absil
  • Dries Van Thourhout
  • Wim Bogaerts
چکیده

We present fabrication and characterization of tungsten (W) heaters for thermo-optic tuning on silicon-on-insulator (SOI). The waferscale fabrication of these thermal tuners was done using standard complementary metal-oxide-semiconductor (CMOS) back-end fabrication materials and processes. Static and transient characterizations of heaters are presented. ©2014 Optical Society of America OCIS codes: (250.5300) Photonic integrated circuits; (160.6840) Thermo-optical materials; (220.4241) Nanostructure fabrication; (130.4815) Optical switching devices. References and links 1. J. Komma, C. Schwarz, G. Hofmann, D. Heinert, and R. Nawrodt, “Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures,” Appl. Phys. Lett. 101(4), 041905 (2012). 2. G. V. Treyz, “Silicon Mach-Zehnder waveguide interferometers operating at 1.3 mu m,” Electron. Lett. 27(2), 118–120 (1991). 3. G. Cocorullo and I. Rendina, “Thermo-optical modulation at 1.5 mu m in silicon etalon,” Electron. Lett. 28(1), 83–85 (1992). 4. B. Guha, A. Gondarenko, and M. Lipson, “Minimizing temperature sensitivity of silicon Mach-Zehnder interferometers,” Opt. Express 18(3), 1879–1887 (2010). 5. J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, X. Han, M. Zhao, G. Morthier, and R. Baets, “Athermal Silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides,” Opt. Express 17(17), 14627–14633 (2009). 6. H. Yu, M. Pantouvaki, S. Dwivedi, P. Verheyen, G. Lepage, R. Baets, W. Bogaerts, P. Absil, and J. Van Campenhout, “Compact Thermally Tunable Silicon Racetrack Modulators Based on an Asymmetric Waveguide,” IEEE Photonic. Tech. L. 25(2), 159–162 (2013). 7. I. Shubin, G. Li, X. Zheng, Y. Luo, H. Thacker, J. Yao, N. Park, A. V. Krishnamoorthy, and J. E. Cunningham, “Integration, processing and performance of low power thermally tunable CMOS-SOI WDM resonators,” Opt. Quantum Electron. 44(12-13), 589–604 (2012). 8. M. R. Watts, J. Sun, C. DeRose, D. C. Trotter, R. W. Young, and G. N. Nielson, “Adiabatic thermo-optic MachZehnder switch,” Opt. Lett. 38(5), 733–735 (2013). 9. L. Cao, A. A. Aboketaf, and S. F. Preble, “CMOS compatible micro-oven heater for efficient thermal control of silicon photonic devices,” Opt. Commun. 305, 66–70 (2013). 10. T. Barwicz, M. A. Popović, F. Gan, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, E. P. Ippen, F. X. Kärtner, and H. I. Smith, “Reconfigurable silicon photonic circuits for telecommunication applications,” Proc. SPIE 6872, 68720Z (2008). 11. J. Xia, J. Yu, Z. Wang, Z. Fan, and S. Chen, “Low power 2×2 thermo-optic SOI waveguide switch fabricated by anisotropy chemical etching,” Opt. Commun. 232(1-6), 223–228 (2004). 12. D. Dai, L. Yang, S. He, and S. Member, “Ultrasmall thermally tunable microring resonator with a submicrometer heater on Si nanowires,” J. Lightwave Technol. 26(6), 704–709 (2008). 13. J. Van Campenhout, W. M. J. Green, S. Assefa, and Y. A. Vlasov, “Integrated NiSi waveguide heaters for CMOS-compatible silicon thermo-optic devices,” Opt. Lett. 35(7), 1013–1015 (2010). 14. J. F. Song, Q. Fang, T. Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D. L. Kwong, “High Efficiency Optical Switches with Heater-on-Slab (HoS) Structures,” in Optical Fiber Communication Conference/National Fiber #210772 $15.00 USD Received 1 May 2014; revised 10 Jun 2014; accepted 10 Jun 2014; published 16 Jun 2014 (C) 2014 OSA 1 July 2014 | Vol. 4, No. 7 | DOI:10.1364/OME.4.001383 | OPTICAL MATERIALS EXPRESS 1383 Optic Engineers Conference 2011, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OThM2. 15. A. Masood, M. Pantouvaki, D. Goossens, G. Lepage, P. Verheyen, D. Van Thourhout, P. Absil, and W. Bogaerts, “CMOS-compatible Tungsten Heaters for Silicon Photonic Waveguides,” in Group IV Photonics (GFP), 2012 IEEE 9th International Conference on, 2012, 234-236. 16. M. Quirk and J. Serda, “Metallization,” in Semiconductor Manufacturing Technology (Prentice Hall, 2001), pp. 293-333. 17. S. K. Selvaraja, P. Jaenen, W. Bogaerts, D. Van Thourhout, P. Dumon, and R. Baets, “Fabrication of Photonic Wire and Crystal Circuits in Silicon-on-Insulator Using 193nm Optical Lithography,” J. Lightwave Technol. 27(18), 4076–4083 (2009). 18. H. Yu, M. Pantouvaki, J. Van Campenhout, D. Korn, K. Komorowska, P. Dumon, Y. Li, P. Verheyen, P. Absil, L. Alloatti, D. Hillerkuss, J. Leuthold, R. Baets, and W. Bogaerts, “Performance tradeoff between lateral and interdigitated doping patterns for high speed carrier-depletion based silicon modulators,” Opt. Express 20(12), 12926–12938 (2012). 19. A. Masood, M. Pantouvaki, G. Lepage, P. Verheyen, J. Van Campenhout, P. Absil, D. Van Thourhout, and W. Bogaerts, “Comparison of heater architectures for thermal control of silicon photonic circuits,” in Group IV Photonics (GFP), 2013 IEEE 10th International Conference on, 2013, 83-84.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optical pulse compression based on nonlinear silicon waveguides and chirped Bragg gratings

Due to the growing demand for higher bandwidth, employing optical devices instead of electronic devices in data transmission systems has attracted much attention in recent years. Optical switches, modulators and wavelength converters are a few examples of the required optical devices. CMOS compatible fabrication of these devices, leads to much more growing of this technology. Optical pulse comp...

متن کامل

CMOS-Compatible Deposited Materials for Photonic Layers Integrated above Electronic Integrated Circuit

Silicon photonics has generated an increasing interest in recent years mainly for optical communications optical interconnects in microelectronic circuits or bio-sensing applications. The development of elementary passive and active components (including detectors and modulators), which are mainly fabricated on the silicon on insulator platform for CMOS-compatible fabrication, has reached such ...

متن کامل

Initialization and Stabilization of Microring Resonators for Next-Generation Silicon Photonic Interconnects

The bandwidth bottleneck looming for traditional electronic interconnects necessitates the use of optical communications, as realized through the CMOS-compatible silicon nanophotonic platform. Within the silicon photonics platform, silicon microring resonators have received a great deal of attention for their ability to implement the critical functionalities of an on-chip optical network while ...

متن کامل

Ultra-low-loss Ta2O5-core/SiO2-clad planar waveguides on Si substrates

An increasing number of systems and applications depend on photonics for transmission and signal processing. This includes data centers, communications systems, environmental sensing, radar, lidar, and microwave signal generation. Such systems increasingly rely on monolithic integration of traditionally bulk optical components onto the chip scale to significantly reduce power and cost while sim...

متن کامل

Integrated Amorphous Silicon p-i-n Temperature Sensor for CMOS Photonics

Hydrogenated amorphous silicon (a-Si:H) shows interesting optoelectronic and technological properties that make it suitable for the fabrication of passive and active micro-photonic devices, compatible moreover with standard microelectronic devices on a microchip. A temperature sensor based on a hydrogenated amorphous silicon p-i-n diode integrated in an optical waveguide for silicon photonics a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014