Speed, spatial, and temporal tuning of rod and cone vision in mouse.
نویسندگان
چکیده
Rods and cones subserve mouse vision over a 100 million-fold range of light intensity (-6 to 2 log cd m(-2)). Rod pathways tune vision to the temporal frequency of stimuli (peak, 0.75 Hz) and cone pathways to their speed (peak, approximately 12 degrees/s). Both pathways tune vision to the spatial components of stimuli (0.064-0.128 cycles/degree). The specific photoreceptor contributions were determined by two-alternative, forced-choice measures of contrast thresholds for optomotor responses of C57BL/6J mice with normal vision, Gnat2(cpfl3) mice without functional cones, and Gnat1-/- mice without functional rods. Gnat2(cpfl3) mice (threshold, -6.0 log cd m(-2)) cannot see rotating gratings above -2.0 log cd m(-2) (photopic vision), and Gnat1-/- mice (threshold, -4.0 log cd m(-2)) are blind below -4.0 log cd m(-2) (scotopic vision). Both genotypes can see in the transitional mesopic range (-4.0 to -2.0 log cd m(-2)). Mouse rod and cone sensitivities are similar to those of human. This parametric study characterizes the functional properties of the mouse visual system, revealing the rod and cone contributions to contrast sensitivity and to the temporal processing of visual stimuli.
منابع مشابه
The visual evoked potential in the mouse—Origins and response characteristics
The visual evoked potential (VEP) in the mouse is characterized and compared to responses obtained with the electroretinogram (ERG). The results indicate that: 1, the VEP originates in the visual cortex; 2, the rod and cone pathways contribute separately to the VEP; 3, temporal tuning functions for rod and cone ERGs are low pass and band pass, respectively; VEP tuning functions are both band pa...
متن کاملPhotopic and scotopic spatiotemporal tuning of adult zebrafish vision
Sensitivity to spatial and temporal patterns is a fundamental aspect of vision. Herein, we investigated this sensitivity in adult zebrafish for a wide range of spatial (0.014 to 0.511 cycles/degree [c/d]) and temporal frequencies (0.025 to 6 cycles/s) to better understand their visual system. Measurements were performed at photopic (1.8 log cd m(-2)) and scotopic (-4.5 log cd m(-2)) light level...
متن کاملSymposium-in-Print: Photoreceptors Scotopic and Photopic Visual Thresholds and Spatial and Temporal Discrimination Evaluated by Behavior of Mice in a Water Mazet
Methods that allow specific manipulations of the mouse genome have made it possible to alter specific aspects of photoreceptor function within the mouse retina. Mice with photoreceptors that have altered photosensitivities and altered photoresponse kinetics are now available. Methods are needed that can show how those perturbations in photoreceptor response characteristics translate into pertur...
متن کاملDie Fledermaus: Regarding Optokinetic Contrast Sensitivity and Light-Adaptation, Chicks Are Mice with Wings
BACKGROUND Through adaptation, animals can function visually under an extremely broad range of light intensities. Light adaptation starts in the retina, through shifts in photoreceptor sensitivity and kinetics plus modulation of visual processing in retinal circuits. Although considerable research has been conducted on retinal adaptation in nocturnal species with rod-dominated retinas, such as ...
متن کاملMotion perception at scotopic light levels.
Although the spatial and temporal properties of rod-mediated vision have been extensively characterized, little is known about scotopic motion perception. To provide such information, we determined thresholds for the detection and identification of the direction of motion of sinusoidal grating patches moving at speeds from 1 to 32 deg/s, under scotopic light levels, in four different types of o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 28 1 شماره
صفحات -
تاریخ انتشار 2008