m at h . SP ] 1 1 Ju l 2 00 9 REMARK ON MAGNETIC SCHRÖDINGER OPERATORS IN EXTERIOR DOMAINS

نویسنده

  • AYMAN KACHMAR
چکیده

We study the Schrödinger operator with a constant magnetic field in the exterior of a two-dimensional compact domain. Functions in the domain of the operator are subject to a boundary condition of the third type (Robin condition). In addition to the Landau levels, we obtain that the spectrum of this operator consists of clusters of eigenvalues around the Landau levels and that they do accumulate to the Landau levels from below. We give a precise asymptotic formula for the rate of accumulation of eigenvalues in these clusters, which appears to be independent from the boundary condition.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

m at h . SP ] 1 8 M ar 2 00 1 SEMICLASSICAL ASYMPTOTICS AND GAPS IN THE SPECTRA OF MAGNETIC SCHRÖDINGER OPERATORS

In this paper, we study an L version of the semiclassical approximation of magnetic Schrödinger operators with invariant Morse type potentials on covering spaces of compact manifolds. In particular, we are able to establish the existence of an arbitrary large number of gaps in the spectrum of these operators, in the semiclassical limit as the coupling constant μ goes to zero.

متن کامل

ar X iv : 0 81 2 . 50 38 v 1 [ m at h . SP ] 3 0 D ec 2 00 8 SEMICLASSICAL ANALYSIS OF SCHRÖDINGER OPERATORS WITH MAGNETIC WELLS

We give a survey of some results, mainly obtained by the authors and their collaborators, on spectral properties of the magnetic Schrödinger operators in the semiclassical limit. We focus our discussion on asymptotic behavior of the individual eigenvalues for operators on closed manifolds and existence of gaps in intervals close to the bottom of the spectrum of periodic operators.

متن کامل

. SP ] 2 F eb 2 00 1 SEMICLASSICAL ASYMPTOTICS AND GAPS IN THE SPECTRA OF MAGNETIC SCHRÖDINGER OPERATORS

In this paper, we study an L version of the semiclassical approximation of magnetic Schrödinger operators with invariant Morse type potentials on covering spaces of compact manifolds. In particular, we are able to establish the existence of an arbitrary large number of gaps in the spectrum of these operators, in the semiclassical limit as the coupling constant μ goes to zero.

متن کامل

. SP ] 3 0 Ju l 2 00 1 Discreteness of spectrum for the magnetic Schrödinger operators

We consider a magnetic Schrödinger operator H in R or on a Riemannian manifold M of bounded geometry. Sufficient conditions for the spectrum of H to be discrete are given in terms of behavior at infinity for some effective potentials Veff which are expressed through electric and magnetic fields. These conditions can be formulated in the form Veff (x) → +∞ as x → ∞. They generalize the classical...

متن کامل

m at h . SP ] 7 F eb 2 00 1 UNIQUENESS RESULTS FOR MATRIX - VALUED SCHRÖDINGER , JACOBI , AND DIRAC - TYPE OPERATORS

Let g(z, x) denote the diagonal Green's matrix of a self-adjoint m × m matrix-valued Schrödinger operator H = − d 2 dx 2 Im + Q(x) in L 2 (R) m , m ∈ N. One of the principal results proven in this paper states that for a fixed x 0 ∈ R and all z ∈ C + , g(z, x 0) and g ′ (z, x 0) uniquely determine the matrix-valued m × m potential Q(x) for a.e. x ∈ R. We also prove the following local version o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009