Fractional Herglotz variational problems with Atangana–Baleanu fractional derivatives

نویسندگان

  • Jianke Zhang
  • Luyang Yin
  • Chang Zhou
چکیده

The purpose of this paper is to solve fractional calculus of variational Herglotz problem depending on an Atangana-Baleanu fractional derivative. Since the new Atangana-Baleanu fractional derivative is non-singular and non-local, the Euler-Lagrange equations are proposed for the problems of Herglotz. Fractional variational Herglotz problems of variable order are considered and two cases are shown. The Noether-type theorem with this new fractional derivative is proved. Several typical examples of the results of this paper are expressed in this paper.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Laplace Variational Iteration Method for Modified Fractional Derivatives with Non-singular Kernel

A universal approach by Laplace transform to the variational iteration method for fractional derivatives with the nonsingular kernel is presented; in particular, the Caputo-Fabrizio fractional derivative and the Atangana-Baleanu fractional derivative with the non-singular kernel is considered. The analysis elaborated for both non-singular kernel derivatives is shown the necessity of considering...

متن کامل

Atangana-Baleanu and Caputo Fabrizio Analysis of Fractional Derivatives for Heat and Mass Transfer of Second Grade Fluids over a Vertical Plate: A Comparative Study

This communication addresses a comparison of newly presented non-integer order derivatives with and without singular kernel, namely Michele Caputo–Mauro Fabrizio (CF) CF(∂β/∂tβ) and Atangana–Baleanu (AB) AB(∂α/∂tα) fractional derivatives. For this purpose, second grade fluids flow with combined gradients of mass concentration and temperature distribution over a vertical flat plate is considered...

متن کامل

Fractional-Order Variational Calculus with Generalized Boundary Conditions

This paper presents the necessary and sufficient optimality conditions for fractional variational problems involving the right and the left fractional integrals and fractional derivatives defined in the sense of Riemman-Liouville with a Lagrangian depending on the free end-points. To illustrate our approach, two examples are discussed in detail.

متن کامل

Atangana-Baleanu derivative with fractional order applied to the model of groundwater within an unconfined aquifer

The power law has been used to construct the derivative with fractional order in Caputo and RiemannLiouville sense, if we viewed them as a convolution. However, it is not always possible to find the power law behaviour in nature. In 2016 Abdon Atangana and Dumitru Baleanu proposed a derivative that is based upon the generalized Mittag-Leffler function, since the Mittag-Leffler function is more ...

متن کامل

A Lyapunov type inequality for fractional operators with nonsingular Mittag-Leffler kernel

In this article, we extend fractional operators with nonsingular Mittag-Leffler kernels, a study initiated recently by Atangana and Baleanu, from order [Formula: see text] to higher arbitrary order and we formulate their correspondent integral operators. We prove existence and uniqueness theorems for the Caputo ([Formula: see text]) and Riemann ([Formula: see text]) type initial value problems ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2018  شماره 

صفحات  -

تاریخ انتشار 2018