Ternary self-assembly of ordered metal oxide-graphene nanocomposites for electrochemical energy storage.

نویسندگان

  • Donghai Wang
  • Rong Kou
  • Daiwon Choi
  • Zhenguo Yang
  • Zimin Nie
  • Juan Li
  • Laxmikant V Saraf
  • Dehong Hu
  • Jiguang Zhang
  • Gordon L Graff
  • Jun Liu
  • Michael A Pope
  • Ilhan A Aksay
چکیده

Surfactant or polymer directed self-assembly has been widely investigated to prepare nanostructured metal oxides, semiconductors, and polymers, but this approach is mostly limited to two-phase materials, organic/inorganic hybrids, and nanoparticle or polymer-based nanocomposites. Self-assembled nanostructures from more complex, multiscale, and multiphase building blocks have been investigated with limited success. Here, we demonstrate a ternary self-assembly approach using graphene as fundamental building blocks to construct ordered metal oxide-graphene nanocomposites. A new class of layered nanocomposites is formed containing stable, ordered alternating layers of nanocrystalline metal oxides with graphene or graphene stacks. Alternatively, the graphene or graphene stacks can be incorporated into liquid-crystal-templated nanoporous structures to form high surface area, conductive networks. The self-assembly method can also be used to fabricate free-standing, flexible metal oxide-graphene nanocomposite films and electrodes. We have investigated the Li-ion insertion properties of the self-assembled electrodes for energy storage and show that the SnO2-graphene nanocomposite films can achieve near theoretical specific energy density without significant charge/discharge degradation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metal (Ni, Co)-Metal Oxides/Graphene Nanocomposites as Multifunctional Electrocatalysts

© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 5799 wileyonlinelibrary.com issues associated with energy security and environmental pollution. [ 1–5 ] Oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER) are the most crucial electrochemical reactions to realize energy storage and conversion in these technologies. Although Pt-, Ir-, and Ru-ba...

متن کامل

Transition metal oxide and graphene nanocomposites for high-performance electrochemical capacitors.

A method for producing nanocomposites of transition metal oxides A(3)O(4) (where A represents Mn, Fe or Co) and graphene nanosheets (GNS) is presented. The reduction of graphene oxide (GO) and the formation of A(3)O(4) nanoparticles (NPs) were carried out simultaneously during the reaction. The electrochemical properties of A(3)O(4)-GNS nanocomposites as electrode materials for supercapacitors ...

متن کامل

Reduced Graphene Oxide-Cr2O3 Nanocomposite as Electrode Material in Supercapacitors

In recent years, electrochemical supercapacitors have received considerable attention from many researchers. Metal oxides such as chromium oxide with high redox activity, high specific capacity, and excellent reversibility are suitable alternatives to ruthenium oxide in supercapacitor applications. In this study, first, graphene oxide (GO) was synthesized by the modified Hummers method. The syn...

متن کامل

Controllable Preparation of V2O5/Graphene Nanocomposites as Cathode Materials for Lithium-Ion Batteries

Transition metal oxides and graphene composites have been widely reported in energy storage and conversion systems. However, the controllable synthesis of graphene-based nanocomposites with tunable morphologies is far less reported. In this work, we report the fabrication of V2O5 and reduced graphene oxide composites with nanosheet or nanoparticle-assembled subunits by adjusting the solvotherma...

متن کامل

Synthesis of magnetic graphene-Fe3O4 nanocomposites by electrochemical exfoliation method

Superparamagnetic few-layer graphene nanocomposites (FLG- NCs) can be used for many technological applications, such as solar cells, batteries, touch panels and supercapacitors. In this work, we applied electrochemical exfoliation method as a simple, one step and economical technique to fabricate FLG- NCs. The fabricated Superparamagnetic FLG- NCs were characterized by X-ray diffraction (XRD), ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ACS nano

دوره 4 3  شماره 

صفحات  -

تاریخ انتشار 2010