Enhanced catalytic efficiency of aminoglycoside phosphotransferase (3')-IIa achieved through protein fragmentation and reassembly.
نویسندگان
چکیده
Many monomeric proteins can be split into two fragments, yet the two fragments can associate to make an active heterodimer. However, for most locations in a protein such a conversion is not feasible, presumably due to inefficient assembly or improper folding of the fragments. For some locations, this can be overcome by fusion of the fragments to dimerization domains that facilitate correct assembly. A variety of heterodimers of aminoglycoside phosphotransferase (3')-IIa (Neo) were created in which the Neo fragments required fusion to a pair of leucine zippers for activity in vivo. However, the ability of these heterodimers to confer kanamycin resistance to Escherichia coli cells was impaired compared to wild-type Neo, primarily due to poor production of soluble protein. The mutations R177S and V198E restored the kanamycin resistance to wild-type levels while maintaining the dependence on leucine zippers for activity. These mutations restored high levels of kanamycin resistance not through an improvement in the production of soluble protein but rather by conferring a large improvement in k(cat)/K(m), surpassing that of Neo. Furthermore, whereas R177S and V198E served to improve k(cat)/K(m) 60-fold in the context of the heterodimer, the same mutations in the context of wild-type Neo had a ninefold negative effect on k(cat)/K(m). This demonstrates the possibility that enzymes with improved catalytic properties can be created through a process involving fragmentation and fusion to domains that facilitate assembly of the fragments.
منابع مشابه
Purification and characterization of aminoglycoside 3'-phosphotransferase type IIa and kinetic comparison with a new mutant enzyme.
Aminoglycoside 3'-phosphotransferase [APH(3')s] provide an important means for high-level resistance to neomycin- and kanamycin-type aminoglycoside antibiotics. A four-step purification which affords milligram quantities of homogeneous APH(3') type IIa [APH(3')-IIa] is described. The kinetic parameters for the turnover of five substrates by the enzyme were determined, and the pH dependence and ...
متن کاملPrevalence of Genes Encoding Aminoglycoside Modifying Enzymes in Clinical Isolates of Klebsiella Pneumoniae in the Hospitals of Borujerd
Background and Aims: Given the importance of aminoglycoside resistance in nosocomial and community infections caused by bacterial pathogenes such as Klebsiella pneumoniae (K. pneumoniae), the aim of this study was to determine the frequency of aac (6')- Ib and aac (3)- IIa, the genes encoding aminoglycoside modifying enzymes involved in aminoglycoside resistance. Material and Methods: A t...
متن کاملThe crystal structures of substrate and nucleotide complexes of Enterococcus faecium aminoglycoside-2''-phosphotransferase-IIa [APH(2'')-IIa] provide insights into substrate selectivity in the APH(2'') subfamily.
Aminoglycoside-2''-phosphotransferase-IIa [APH(2'')-IIa] is one of a number of homologous bacterial enzymes responsible for the deactivation of the aminoglycoside family of antibiotics and is thus a major component in bacterial resistance to these compounds. APH(2'')-IIa produces resistance to several clinically important aminoglycosides (including kanamycin and gentamicin) in both gram-positiv...
متن کاملPrevalence of aac(3)-IIa, aph(3)-Ia and ant(2)- Ia Genes among Uropathogenic Escherichia Coli Isolates
Abstract Background and Objective: Escherichia coli, one of the most common causative agents of urinary tract infections (UTIs) acquired from community and hospital, has developed multiple resistances to various antibiotics such as aminoglycosides. The main resistance mechanism to aminoglycosides is inactivation of these drugs by a variety of acetyltransferase, nucleotidyltransferase, and phosp...
متن کاملDirected Evolution of Aminoglycoside Phosphotransferase (3′) Type IIIa Variants That Inactivate Amikacin but Impose Significant Fitness Costs
The rules that govern adaptive protein evolution remain incompletely understood. Aminoglycoside aminotransferase (3') type IIIa (hereafter abbreviated APH(3')-IIIa) is a good model enzyme because it inactivates kanamycin efficiently; it recognizes other aminoglycoside antibiotics, including amikacin, but not nearly as well. Here we direct the evolution of APH(3')-IIIa variants with increased ac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of molecular biology
دوره 353 1 شماره
صفحات -
تاریخ انتشار 2005