Distributed finite-time attitude containment control for multiple rigid bodies

نویسندگان

  • Ziyang Meng
  • Wei Ren
  • Zheng You
چکیده

Distributed finite-time attitude containment control for multiple rigid bodies is addressed in this paper. When there exist multiple stationary leaders, we propose a model-independent control law to guarantee that the attitudes of the followers converge to the stationary convex hull formed by those of the leaders in finite time by using both the one-hop and two-hop neighbors’ information. We also discuss the special case of a single stationary leader and propose a control law using only the one-hop neighbors’ information to guarantee cooperative attitude regulation in finite time. When there exist multiple dynamic leaders, a distributed sliding-mode estimator and a non-singular sliding surface were given to guarantee that the attitudes and angular velocities of the followers converge, respectively, to the dynamic convexhull formed by those of the leaders in finite time. We also explicitly show the finite settling time. © 2010 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quaternion-based Finite-time Sliding Mode Controller Design for Attitude Tracking of a Rigid Spacecraft during High-thrust Orbital Maneuver in the Presence of Disturbance Torques

In this paper, a quaternion-based finite-time sliding mode attitude controller is designed for a spacecraft performing high-thrust orbital maneuvers, with cold gas thrusters as its actuators. The proposed controller results are compared with those of a quaternion feedback controller developed for the linearized spacecraft dynamics, in terms of settling time, steady-state error, number of thrust...

متن کامل

Decentralized Finite Time Attitude Synchronization Control of Satellite Formation Flying

This paper investigates a quaternion-based finite time attitude synchronization and stabilization problem for satellite formation flying. Sufficient conditions are presented for finite time boundness and stability of this distributed consensus problem. More specifically, a nonlinear control law based on a finite time control technique is developed such that the attitude of the rigid spacecraft ...

متن کامل

Finite-time stabilization of satellite quaternion attitude

In this paper, a finite-time control scheme is presented for stabilization of the satellite chaotic attitude around its equilibrium point when its attitude is confused by a disturbed torque. Controllers and settling time of stabilizaton are obtained, based on the Lyapunov stability theorem and finite-time control scheme. This method is satisfied for any initial condition. Numerical simulations ...

متن کامل

Cooperative Attitude Control of Multiple Rigid Bodies with Multiple Time-Varying Delays and Dynamically Changing Topologies

Cooperative attitude regulation and tracking problems are discussed in the presence of multiple time-varying communication delays and dynamically changing topologies. In the case of cooperative attitude regulation, we propose conditions to guarantee the stability of the closed-loop system when there exist multiple time-varying communication delays. In the case of cooperative attitude tracking, ...

متن کامل

Robust Saturated Finite Time Output Feedback Attitude Stabilization for Rigid Spacecraft

This paper investigates the velocity-free feedback control problem associated with finite time attitude stabilization of a rigid spacecraft subject to external disturbance and input saturation. First of all, to address the lack of angular velocity measurement, a novel, fast, finite time convergent observer is proposed to recover the unknown angular velocity information in a finite time under ex...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Automatica

دوره 46  شماره 

صفحات  -

تاریخ انتشار 2010