Expression of genes involved in excitatory neurotransmission in anoxic crucian carp (Carassius carassius) brain.
نویسندگان
چکیده
The crucian carp, Carassius carassius, survives months without oxygen. During anoxia it needs to keep energy expenditure low, particularly in the brain, with its high rate of ATP use related to neuronal activity. This could be accomplished by reducing neuronal excitability through altered expression of genes involved in excitatory neurotransmission. Through cloning and the use of a recently developed real-time RT-PCR approach, with an external RNA control for normalization, we investigated the effect of 1 and 7 days of anoxia (12 degrees C) on the expression of 29 genes, including 8 3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptor subunits, 6 N-methyl-d-aspartate (NMDA) receptor subunits, 7 voltage-gated sodium and calcium channels, 4 glutamate transporters, and 4 genes involved in NMDA receptor-mediated neuroplasticity. The subunits of the majority of the gene families had expression profiles similar to those observed in the mammalian brain and showed remarkably stable expression during anoxia. This suggests that the genes may have similar functions in crucian carp and mammals, and that the excitatory abilities of the crucian carp brain are retained during anoxia. Although the data generally argue against profound neural depression ("channel arrest"), NMDA receptor subunit (NR) expression showed features that could mediate reduced neural excitability. Primarily, the NR2 subunit expression, which was dominated by NR2B and NR2D, resembled that seen in hypoxia-tolerant neonatal rats, and decreased anoxic expression of NR1, NR2C, and NR3A indicated reduced numbers of functional NMDA receptors. We also report the full-length sequence of crucian carp NR1 mRNA and a novel NR1 splice cassette introducing an N-glycosylation site into the extracellular S1S2 domain.
منابع مشابه
CALL FOR PAPERS Comparative Genomics Expression of genes involved in excitatory neurotransmission in anoxic crucian carp (Carassius carassius) brain
Stian Ellefsen, Guro K. Sandvik, Helene K. Larsen, Kåre-Olav Stensløkken, Dag Are S. Hov, Tom A. Kristensen, and Göran E. Nilsson Physiology Programme, Department of Molecular Biosciences, University of Oslo, Oslo; Lillehammer University College, Lillehammer; Cancer and Surgical Division, Ullevål University Hospital, Oslo; and Gene Programme, Department of Molecular Biosciences, University of O...
متن کاملExpression of genes involved in GABAergic neurotransmission in anoxic crucian carp brain (Carassius carassius).
The crucian carp, Carassius carassius, survives days to months without oxygen, depending on temperature. In the anoxic crucian carp brain, increased GABAergic inhibition, mediated by increased extracellular levels of GABA, has been shown to suppress electric activity and ATP consumption. To investigate an involvement of gene expression in this response, we utilized real-time RT-PCR to test the ...
متن کاملExpression of heat shock proteins in anoxic crucian carp (Carassius carassius): support for cold as a preparatory cue for anoxia.
The crucian carp (Carassius carassius) tolerates anoxia for days to months depending on temperature. During episodes of stress, heat shock proteins (HSPs) are important for limiting cellular damage, mainly by ensuring protein function. Accordingly, we hypothesized that anoxia would change the expression of HSPs and that this response would be temperature dependent. Real-time RT-PCR was used to ...
متن کاملIntrinsic contractile properties of the crucian carp (Carassius carassius) heart during anoxic and acidotic stress.
The crucian carp (Carassius carassius) seems unique among vertebrates in its ability to maintain cardiac performance during prolonged anoxia. We investigated whether this phenomenon arises in part from a myocardium tolerant to severe acidosis or because the anoxic crucian carp heart may not experience a severe extracellular acidosis due to the fish's ability to convert lactate to ethanol. Spont...
متن کاملDifferential regulation of AMP-activated kinase and AKT kinase in response to oxygen availability in crucian carp (Carassius carassius).
We investigated whether two kinases critical for survival during periods of energy deficiency in anoxia-intolerant mammalian species, AMP-activated kinase (AMPK), and protein kinase B (AKT), are equally important for hypoxic/anoxic survival in the extremely anoxia-tolerant crucian carp (Carassius carassius). We report that phosphorylation of AMPK and AKT in heart and brain showed small changes ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physiological genomics
دوره 35 1 شماره
صفحات -
تاریخ انتشار 2008