Neuronal activity patterns in primate primary motor cortex related to trained or semiautomatic jaw and tongue movements.
نویسندگان
چکیده
The present study was undertaken to determine the firing patterns and the mechanoreceptive field (RF) properties of neurons within the face primary motor cortex (face-MI) in relation to chewing and other orofacial movements in the awake monkey. Of a total of 107 face-MI neurons recorded, 73 of 74 tested had activity related to chewing and 47 of 66 neurons tested showed activity related to a trained tongue task. Of the 73 chewing-related neurons, 52 (71.2%) showed clear rhythmic activity during rhythmic chewing. A total of 32 (43.8%) also showed significant alterations in activity in relation to the swallowing of a solid food (apple) bolus. Many of the chewing-related neurons (81.8% of 55 tested) had an orofacial RF, which for most was on the tongue dorsum. Tongue protrusion was evoked by intracortical microstimulation (ICMS) at most (63.6%) of the recording sites where neurons fired during the rhythmic jaw-opening phase, whereas tongue retraction was evoked by ICMS at most (66.7%) sites at which the neurons firing during the rhythmic jaw-closing phase were recorded. Of the 47 task-related neurons, 21 of 22 (95.5%) examined also showed chewing-related activity and 29 (61.7%) demonstrated significant alteration in activity in relation to the swallowing of a juice reward. There were no significant differences in the peak firing frequency among neuronal activities related to chewing, swallowing, or the task. These findings provide further evidence that face-MI may play an important role not only in trained orofacial movements but also in chewing as well as swallowing, including the control of tongue and jaw movements that occur during the masticatory sequence.
منابع مشابه
Functional properties of neurons in the primate tongue primary motor cortex during swallowing.
Recent studies conducted in our laboratory have suggested that the tongue primary motor cortex (i.e., tongue-MI) plays a critical role in the control of voluntary tongue movements in the primate. However, the possible involvement of tongue-MI in semiautomatic tongue movements, such as those in swallowing, remains unknown. Therefore the present study was undertaken in attempts to address whether...
متن کاملNeural discharge and local field potential oscillations in primate motor cortex during voluntary movements.
The role of "fast," or gamma band (20-80 Hz), local field potential (LFP) oscillations in representing neuronal activity and in encoding motor behavior was examined in motor cortex of two alert monkeys. Using chronically implanted microwires, we simultaneously recorded LFPs and single or multiple unit (MU) discharge at a group of sites in the precentral gyrus during trained finger force or reac...
متن کاملTask-dependent selectivity of movement-related neuronal activity in the primate prefrontal cortex.
Task-dependent selectivity of movement-related neuronal activity in the primate prefrontal cortex. J. Neurophysiol. 80: 3392-3397, 1998. We studied movement-related neuronal activity in the dorsolateral prefrontal cortex from the perspective of a general role for the prefrontal cortex in controlling motor behavior to achieve a specific goal according to the requirements of a given task. Monkeys...
متن کاملOptical Imaging of the Motor Cortex in the Brain in Order to Determine the Direction of the Hand Movements Using Functional Near-Infrared Spectroscopy (fNIRS)
Introduction: In recent years, optical imaging has attracted a lot of attention from scholars as a non- aggressive, efficient method for evaluating the activities of the motor cortex in the brain. Functional near-infrared spectroscopy (fNIRS (is a tool showing the hemodynamic changes in a cortical area of the brain according to optical principles. The present study has been de...
متن کاملNeuronal clusters in the primate motor cortex during interception of moving targets.
Two rhesus monkeys were trained to intercept a moving target at a fixed location with a feedback cursor controlled by a 2-D manipulandum. The direction from which the target appeared, the time from the target onset to its arrival at the interception point, and the target acceleration were randomized for each trial, thus requiring the animal to adjust its movement according to the visual input o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 87 5 شماره
صفحات -
تاریخ انتشار 2002