Ab Initio Study of Water Polarization in the Hydration Shell of Aqueous Hydroxide: Comparison between Polarizable and Nonpolarizable Water Models.

نویسندگان

  • Denis Bucher
  • Angus Gray-Weale
  • Serdar Kuyucak
چکیده

Ab initio simulations of aqueous hydroxide are performed to study the structure and polarization of water molecules in the first solvation shell. Polarization is found to depend on the configuration of the hydrogen-bond (HB) donors. In the most common case of four HB donors, the dipole moment of water molecules is much larger than those in the first shell of monovalent ions. When there are only three HB donors, the water dipole moment exceeds even those in the first shell of a divalent cation. We also show that the dipole fluctuations in the first hydration shell of hydroxide are reduced compared to bulk water, which can provide a rationale for the propensity of hydroxide for interfaces with hydrophobes. Because of its unique properties, hydroxide provides a nontrivial test for benchmarking classical models. Comparison of the ab initio results with those obtained from the classical models indicates that the latter need to be further improved in order to yield reliable results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dissociation of NaCl in water from ab initio molecular dynamics simulations.

We perform ab initio molecular dynamics simulations to study the dissociation of NaCl in water. The potential of mean force (PMF) between the two ions is determined using the constrained-force method. The simulation windows corresponding to the contact and solvent-separated minima, and the transition state in between, are further analyzed to determine the changes in the properties of hydration ...

متن کامل

A one-electron model for the aqueous electron that includes many-body electron-water polarization: Bulk equilibrium structure, vertical electron binding energy, and optical absorption spectrum.

Previously, we reported an electron-water pseudopotential designed to be used in conjunction with a polarizable water model, in order to describe the hydrated electron [L. D. Jacobson et al., J. Chem. Phys. 130, 124115 (2009)]. Subsequently, we found this model to be inadequate for the aqueous electron in bulk water, and here we report a reparametrization of the model. Unlike the previous model...

متن کامل

Ab initio calculation of the potential of mean force for dissociation of aqueous Ca-Cl.

The potential of mean force for the dissociation of a Ca-Cl ion pair in water is calculated from ab initio molecular dynamics simulations. The constraint-force method is employed to enhance sampling over the entire range of the reaction coordinate (Ca-Cl distance) from 2.2 to 6.5 Å. Particular attention is paid to equilibration of the system as it is found that the potential of mean force is hi...

متن کامل

Modeling of the hydration shell of Adenine

The molecular geometry of complex of adenine with 8 water molecules was calculated with Hartree-Fock (HF). The standard 6-31G(d) basis set has been employed. The existence of C-H…O Hydrogen bonds between the water molecules and the hydrophobic part of nucleobase is stablished. We optimized structures and computed interaction energies of all complexes of adenine with water molecules step by step...

متن کامل

Ionization of imidazole in the gas phase, microhydrated environments, and in aqueous solution.

Hydration of neutral and cationic imidazole is studied by means of ab initio and molecular dynamics calculations, and by photoelectron spectroscopy of the neutral species in a liquid microjet. The calculations show the importance of long range solvent polarization and of the difference between the structure of water molecules in the first shell around the neutral vs cationic species for determi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of chemical theory and computation

دوره 6 9  شماره 

صفحات  -

تاریخ انتشار 2010