Real Quadratic Fields with Abelian 2-class Field Tower

نویسنده

  • ELLIOT BENJAMIN
چکیده

We determine all real quadratic number fields with 2-class field tower of length at most 1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Imaginary Quadratic

is called the 2-class field tower of k. If n is the minimal integer such that kn = kn+1, then n is called the length of the tower. If no such n exists, then the tower is said to be of infinite length. At present there is no known decision procedure to determine whether or not the (2-)class field tower of a given field k is infinite. However, it is known by group theoretic results (see [2]) that...

متن کامل

The 4-class Group of Real Quadratic Number Fields

In this paper we give an elementary proof of results on the structure of 4-class groups of real quadratic number fields originally due to A. Scholz. In a second (and independent) section we strengthen C. Maire’s result that the 2-class field tower of a real quadratic number field is infinite if its ideal class group has 4-rank ≥ 4, using a technique due to F. Hajir.

متن کامل

On the real quadratic fields with certain continued fraction expansions and fundamental units

The purpose of this paper is to investigate the real quadratic number fields $Q(sqrt{d})$ which contain the specific form of the continued fractions expansions of integral basis element  where $dequiv 2,3( mod  4)$ is a square free positive integer. Besides, the present paper deals with determining the fundamental unit$$epsilon _{d}=left(t_d+u_dsqrt{d}right) 2left.right > 1$$and  $n_d$ and $m_d...

متن کامل

On Imaginary Quadratic Number Fields with 2-class Group of Rank 4 and Infinite 2-class Field Tower

Let k be an imaginary quadratic number field with Ck,2, the 2-Sylow subgroup of its ideal class group Ck, of rank 4. We show that k has infinite 2-class field tower for particular families of fields k, according to the 4-rank of Ck, the Kronecker symbols of the primes dividing the discriminant ∆k of k, and the number of negative prime discriminants dividing ∆k. In particular we show that if the...

متن کامل

On the 2-class Field Tower of a Quadratic Number Field

Let k = k be a quadratic number field with discriminant ∆. For n ≥ 0, we define fields k inductively by taking k as the compositum of all unramified quadratic extensions of k that are central over k. Then k(∞) = ⋃∞ n=0 k (n,2) is the 2-class field tower of k. In the following, we call k the n central 2-step. The structure of the Galois group Gal (k/k) of the first central 2-step is determined b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005