Context-specific adaptation of the vertical vestibuloocular reflex with regard to gravity.

نویسندگان

  • S B Yakushin
  • T Raphan
  • B Cohen
چکیده

We determined whether head position with regard to gravity is an important context for angular vestibuloocular reflex (aVOR) gain adaptation. Vertical aVOR gains were adapted with monkeys upright or on side by rotating the animals about an interaural axis in phase or out of phase with the visual surround for 4 h. When aVOR gains were adapted with monkeys upright, gain changes were symmetrical when tested in either on-side position (23 +/- 7%; mean +/- SD). After on-side adaptation, however, gain changes were always larger when animals were tested in the same on-side position in which they were adapted. Gain changes were 43 +/- 16% with ipsilateral side down and 9 +/- 8% with contralateral side down. The context-specific effects of head position on vertical aVOR gain were the same whether the gain was increased or decreased. The data indicate that vertical aVOR gain changes are stored in the context of the head orientation in which changes were induced. This association could be an important context for expressing the adapted state of the aVOR gain during vertical head movement.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gravity-specific adaptation of the angular vestibuloocular reflex: dependence on head orientation with regard to gravity.

The gain of the vertical angular vestibuloocular reflex (aVOR) was adaptively altered by visual-vestibular mismatch during rotation about an interaural axis, using steps of velocity in three head orientations: upright, left-side down, and right-side down. Gains were decreased by rotating the animal and visual surround in the same direction and increased by visual and surround rotation in opposi...

متن کامل

Modeling gravity-dependent plasticity of the angular vestibuloocular reflex with a physiologically based neural network.

A neural network model was developed to explain the gravity-dependent properties of gain adaptation of the angular vestibuloocular reflex (aVOR). Gain changes are maximal at the head orientation where the gain is adapted and decrease as the head is tilted away from that position and can be described by the sum of gravity-independent and gravity-dependent components. The adaptation process was m...

متن کامل

Spatial distribution of gravity-dependent gain changes in the vestibuloocular reflex.

This study determined whether dependence of angular vestibuloocular reflex (aVOR) gain adaptation on gravity is a fundamental property in three dimensions. Horizontal aVOR gains were adaptively increased or decreased in two cynomolgus monkeys in upright, side down, prone, and supine positions, and aVOR gains were tested in darkness by yaw rotation with the head in a wide variety of orientations...

متن کامل

Dependence of the roll angular vestibuloocular reflex (aVOR) on gravity.

Little is known about the dependence of the roll angular vestibuloocular reflex (aVOR) on gravity or its gravity-dependent adaptive properties. To study gravity-dependent characteristics of the roll aVOR, monkeys were oscillated about a naso-occipital axis in darkness while upright or tilted. Roll aVOR gains were largest in the upright position and decreased by 7-15% as animals were tilted from...

متن کامل

A dynamical model for the vertical vestibuloocular reflex and optokinetic response in primate

The vestibuloocular reflex (VOR) in concert with the optokinetic response (OKR) stabilizes vision during head motion. The VOR system characteristics are both compensatory and adaptively self-calibrated. A model was constructed to aid in the understanding of the roles of the cerebellum and other neuronal sites in the performance and adaptation of the vertical VOR. The model structure was based u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 84 6  شماره 

صفحات  -

تاریخ انتشار 2000