Hopf Differentials and Smoothing Sobolev Homeomorphisms

نویسندگان

  • Tadeusz Iwaniec
  • Leonid V. Kovalev
  • Jani Onninen
  • TADEUSZ IWANIEC
  • JANI ONNINEN
چکیده

We prove that planar homeomorphisms can be approximated by diffeomorphisms in the Sobolev space W 1,2 and in the Royden algebra. As an application, we show that every discrete and open planar mapping with a holomorphic Hopf differential is harmonic.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Planar Sobolev Homeomorphisms and Hausdorff Dimension Distortion

We investigate how planar Sobolev-Orlicz homeomorphisms map sets of Hausdorff dimension less than two. With the correct gauge functions the generalized Hausdorff measures of the image sets are shown to be zero.

متن کامل

On the Bi-sobolev Planar Homeomorphisms and Their Approximation

The first goal of this paper is to give a short description of the planar bi-Sobolev homeomorphisms, providing simple and self-contained proofs for some already known properties. In particular, for any such homeomorphism u : Ω → ∆, one has Du(x) = 0 for almost every point x for which Ju(x) = 0. As a consequence, one can prove that ∫

متن کامل

Infinite sequence of fixed point free pseudo-Anosov homeomorphisms

We construct an infinite sequence of pseudo-Anosov homeomorphisms without fixed points and leaving invariant a sequence of orientable measured foliations on the same topological surface and the same stratum of the space of Abelian differentials. The existence of such a sequence shows that all pseudo-Anosov homeomorphisms fixing orientable measured foliations cannot be obtained by the Rauzy-Veec...

متن کامل

Pseudo-Poincaré Inequalities and Applications to Sobolev Inequalities

Most smoothing procedures are via averaging. Pseudo-Poincaré inequalities give a basic L-norm control of such smoothing procedures in terms of the gradient of the function involved. When available, pseudo-Poincaré inequalities are an efficient way to prove Sobolev type inequalities. We review this technique and its applications in various geometric setups.

متن کامل

Principal Boundary of Moduli Spaces of Abelian and Quadratic Differentials

The seminal work of Eskin-Masur-Zorich described the principal boundary of moduli spaces of abelian differentials that parameterizes flat surfaces with a prescribed generic configuration of short parallel saddle connections. In this paper we describe the principal boundary for each configuration in terms of twisted differentials over Deligne-Mumford pointed stable curves. We also describe simil...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015