Topologically confined states at corrugations of gated bilayer graphene
نویسندگان
چکیده
We investigate the electronic and transport properties of gated bilayer graphene with one corrugated layer, which results in a stacking AB/BA boundary. When a gate voltage is applied to one layer, topologically protected gap states appear at the corrugation, which reveal as robust transport channels along the stacking boundary. With increasing size of the corrugation, more localized, quantum-well-like states emerge. These finite-size states are likewise conductive along the fold, but in contrast to the stacking boundary states, which are gapless, they present a gap. Additionally, we have studied periodic corrugations in bilayer graphene; our findings show that such corrugations between ABand BA-stacked regions also behave as conducting channels in the direction of the folds. These topological states could be easily identified due to the spatial shape of the corrugations.
منابع مشابه
Electrostatically confined quantum rings in bilayer graphene.
We propose a new system where electron and hole states are electrostatically confined into a quantum ring in bilayer graphene. These structures can be created by tuning the gap of the graphene bilayer using nanostructured gates or by position-dependent doping. The energy levels have a magnetic field (B(0)) dependence that is strikingly distinct from that of usual semiconductor quantum rings. In...
متن کاملQuantum Hall effect in twisted bilayer graphene.
We address the quantum Hall behavior in twisted bilayer graphene transferred from the C face of SiC. The measured Hall conductivity exhibits the same plateau values as for a commensurate Bernal bilayer. This implies that the eightfold degeneracy of the zero energy mode is topologically protected despite rotational disorder as recently predicted. In addition, an anomaly appears. The densities at...
متن کاملGap state analysis in electric-field-induced band gap for bilayer graphene
The origin of the low current on/off ratio at room temperature in dual-gated bilayer graphene field-effect transistors is considered to be the variable range hopping in gap states. However, the quantitative estimation of gap states has not been conducted. Here, we report the systematic estimation of the energy gap by both quantum capacitance and transport measurements and the density of states ...
متن کاملThermally activated conductivity in gapped bilayer graphene
This is a theoretical study of electron transport in gated bilayer graphene — a novel semiconducting material with a tunable band gap. It is shown that the quantum mechanical superposition between conduction and valence band states enhances the subgap conductivity and facilitates the thermally activated transport. The mechanism proposed can also lead to the non-monotonic conductivity vs. temper...
متن کاملBroken-symmetry states in doubly gated suspended bilayer graphene.
The single-particle energy spectra of graphene and its bilayer counterpart exhibit multiple degeneracies that arise through inherent symmetries. Interactions among charge carriers should spontaneously break these symmetries and lead to ordered states that exhibit energy gaps. In the quantum Hall regime, these states are predicted to be ferromagnetic in nature, whereby the system becomes spin po...
متن کامل