Troponin T isoforms alter the tolerance of transgenic mouse cardiac muscle to acidosis.

نویسندگان

  • Thomas M Nosek
  • Marco A Brotto
  • Jian-Ping Jin
چکیده

Troponin T (TnT) is an essential protein in the Ca2+ regulatory system of striated of muscle. Three fiber type-specific TnT genes have evolved in higher vertebrates to encode cardiac, slow and fast skeletal muscle TnT isoforms. To understand the functional significance of TnT isoforms, we studied the effects of acidosis on the contractility of transgenic mouse cardiac muscle that expresses fast skeletal muscle TnT. Contractility analysis of intact cardiac muscle strips showed that while no differences were detected at physiological pH, the transgenic cardiac muscle had significantly greater decreases in +dF/dtmax at acidic pH than that of the wild-type control. Contractility of skinned cardiac muscles demonstrated that the presence of fast TnT resulted in significantly larger decreases in force and Ca2+ sensitivity at acidic pH than that of the wild-type control. The effect of TnT isoforms on the tolerance of muscle to acidosis may explain the higher tolerance of embryonic versus adult cardiac muscles. The results are consistent with the hypothesis that charge differences in TnT isoforms contribute to the contractility of muscle. The data further support a hypothesis that slow TnT is similar to the cardiac, but not fast, and TnT may contribute to the higher tolerance of slow muscles to stress conditions. Therefore, TnT isoform diversity may contribute to the compatibility of muscle thin filaments to cellular environments in different fiber types, during development and functional adaptation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The N-terminal extension of cardiac troponin T stabilizes the blocked state of cardiac thin filament.

Cardiac troponin T (cTnT) is a key component of contractile regulatory proteins. cTnT is characterized by a ∼32 amino acid N-terminal extension (NTE), the function of which remains unknown. To understand its function, we generated a transgenic (TG) mouse line that expressed a recombinant chimeric cTnT in which the NTE of mouse cTnT was removed by replacing its 1-73 residues with the correspondi...

متن کامل

Co-expression of skeletal and cardiac troponin T decreases mouse cardiac function.

In contrast to skeletal muscles that simultaneously express multiple troponin T (TnT) isoforms, normal adult human cardiac muscle contains a single isoform of cardiac TnT. To understand the significance of myocardial TnT homogeneity, we examined the effect of TnT heterogeneity on heart function. Transgenic mouse hearts overexpressing a fast skeletal muscle TnT together with the endogenous cardi...

متن کامل

The functional effect of dilated cardiomyopathy mutation (R144W) in mouse cardiac troponin T is differently affected by α- and β-myosin heavy chain isoforms.

Given the differential impact of α- and β-myosin heavy chain (MHC) isoforms on how troponin T (TnT) modulates contractile dynamics, we hypothesized that the effects of dilated cardiomyopathy (DCM) mutations in TnT would be altered differently by α- and β-MHC. We characterized dynamic contractile features of normal (α-MHC) and transgenic (β-MHC) mouse cardiac muscle fibers reconstituted with a m...

متن کامل

Chronic coexistence of two troponin T isoforms in adult transgenic mouse cardiomyocytes decreased contractile kinetics and caused dilatative remodeling.

Our previous in vivo and ex vivo studies suggested that coexistence of two or more troponin T (TnT) isoforms in adult cardiac muscle decreased cardiac function and efficiency (Huang QQ, Feng HZ, Liu J, Du J, Stull LB, Moravec CS, Huang X, Jin JP, Am J Physiol Cell Physiol 294: C213-C22, 2008; Feng HZ, Jin JP, Am J Physiol Heart Circ Physiol 299: H97-H105, 2010). Here we characterized Ca(2+)-reg...

متن کامل

Troponin Mutation Caused Diastolic Dysfunction and Experimental Treatment in Transgenic Mice with Cardiomyopathy

Troponin, a contractile protein of the thin filament of striated muscle, consists of three subunits: troponin C (TnC), troponin T (TnT), and troponin I (TnI). Cardiac troponin I (cTnI) plays a critical role in regulation of cardiac function. The physiological effect of cTnI, as an inhibitory subunit of troponin complex, is to prevent the interaction between myosin heavy chain heads and actins, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Archives of biochemistry and biophysics

دوره 430 2  شماره 

صفحات  -

تاریخ انتشار 2004