A new seed projection method for solving shifted systems with multiple right-hand sides
نویسندگان
چکیده
In this paper, we propose a new seed projection method for solving shifted systems with multiple right-hand sides. This seed projection method uses a seed selection strategy. Numerical experiments are presented to show the efficiency of the newly method. Keywords—shifted systems, multiple right-hand sides, seed projection.
منابع مشابه
New variants of the global Krylov type methods for linear systems with multiple right-hand sides arising in elliptic PDEs
In this paper, we present new variants of global bi-conjugate gradient (Gl-BiCG) and global bi-conjugate residual (Gl-BiCR) methods for solving nonsymmetric linear systems with multiple right-hand sides. These methods are based on global oblique projections of the initial residual onto a matrix Krylov subspace. It is shown that these new algorithms converge faster and more smoothly than the Gl-...
متن کاملGalerkin Projection Methods for Solving Multiple Linear Systems
In this paper, we consider using Galerkin projection methods for solving multiple linear systems A (i) x (i) = b (i) , for 1 i s, where the coeecient matrices A (i) and the right-hand sides b (i) are diierent in general. In particular, we focus on the seed projection method which generates a Krylov subspace from a set of direction vectors obtained by solving one of the systems, called the seed ...
متن کاملAnalysis of Projection Methods for Solving Linear Systems with Multiple Right-Hand Sides
We analyze a class of Krylov projection methods but mainly concentrate on a specific conjugate gradient (CG) implementation by Smith, Peterson, and Mittra [IEEE Transactions on Antennas and Propogation, 37 (1989), pp. 1490–1493] to solve the linear system AX = B, where A is symmetric positive definite and B is a multiple of right-hand sides. This method generates a Krylov subspace from a set of...
متن کاملar X iv : 0 70 7 . 05 02 v 1 [ m at h - ph ] 3 J ul 2 00 7 DEFLATED GMRES FOR SYSTEMS WITH MULTIPLE SHIFTS AND MULTIPLE RIGHT - HAND SIDES
We consider solution of multiply shifted systems of nonsymmetric linear equations, possibly also with multiple right-hand sides. First, for a single right-hand side, the matrix is shifted by several multiples of the identity. Such problems arise in a number of applications, including lattice quantum chromodynamics where the matrices are complex and non-Hermitian. Some Krylov iterative methods s...
متن کاملDeflated Gmres for Systems with Multiple Shifts and Multiple Right-hand Sides∗
We consider solution of multiply shifted systems of nonsymmetric linear equations, possibly also with multiple right-hand sides. First, for a single right-hand side, the matrix is shifted by several multiples of the identity. Such problems arise in a number of applications, including lattice quantum chromodynamics where the matrices are complex and non-Hermitian. Some Krylov iterative methods s...
متن کامل