A Contextual Fire Detection Algorithm for Simulated HJ-1B Imagery
نویسندگان
چکیده
The HJ-1B satellite, which was launched on September 6, 2008, is one of the small ones placed in the constellation for disaster prediction and monitoring. HJ-1B imagery was simulated in this paper, which contains fires of various sizes and temperatures in a wide range of terrestrial biomes and climates, including RED, NIR, MIR and TIR channels. Based on the MODIS version 4 contextual algorithm and the characteristics of HJ-1B sensor, a contextual fire detection algorithm was proposed and tested using simulated HJ-1B data. It was evaluated by the probability of fire detection and false alarm as functions of fire temperature and fire area. Results indicate that when the simulated fire area is larger than 45 m(2) and the simulated fire temperature is larger than 800 K, the algorithm has a higher probability of detection. But if the simulated fire area is smaller than 10 m(2), only when the simulated fire temperature is larger than 900 K, may the fire be detected. For fire areas about 100 m(2), the proposed algorithm has a higher detection probability than that of the MODIS product. Finally, the omission and commission error were evaluated which are important factors to affect the performance of this algorithm. It has been demonstrated that HJ-1B satellite data are much sensitive to smaller and cooler fires than MODIS or AVHRR data and the improved capabilities of HJ-1B data will offer a fine opportunity for the fire detection.
منابع مشابه
A Spatio-Temporal Model for Forest Fire Detection Using HJ-IRS Satellite Data
Fire detection based on multi-temporal remote sensing data is an active research field. However, multi-temporal detection processes are usually complicated because of the spatial and temporal variability of remote sensing imagery. This paper presents a spatio-temporal model (STM) based forest fire detection method that uses multiple images of the inspected scene. In STM, the strong correlation ...
متن کاملForest Canopy Moisture Content Monitoring Method Using HJ-1B IRS Data
Forest canopy moisture content is an important factor in determining forest fire risk and forest fire behaviour. In Dargon 2 project, to develop a suitable regional early warning technique to predict forest fire risk, a Normal Difference Water Index (NDWI), which has been calculated by using the reflectance of SWIR and NIR band of HJ-1B IRS, has been used to retrieve forest canopy moisture cont...
متن کاملتجزیه و تحلیل آتشسوزی جنگل با منشأ آبوهوایی با دادههای ماهوارهای در منطقهی البرز
Forest fire is one of the important problems in Iran which is caused by different factors such as human and natural factors. One of these factors is climate conditions that can be created by heat wave and special circulation of atmospheric phenomena. Occurrence of forest fire in north of Iran have different impacts on environment such as destruction of natural. According to the position of Iran...
متن کاملAn Agent-based Algorithm for Forest Fire Detection
For remote sensing image analysis, it is necessary to use spatial information surrounding pixels, in addition to spectral information of them. Several works have been done in this field. On the other hand, autonomous agents, a newly explored area of research in image processing, can operate directly in the two-dimensional lattice of a digital image and provide an attractive abstraction to encap...
متن کاملReal-time detection of wildlife using NOAA/AVHRR data Study area :(Kayamaki Wildlife Refuge)
Forest fire in recent years has paid great attention to climate change and ecosystems. Remote sensing is a quick and inexpensive way to detect and monitor forest fires on a large scale. The purpose of this study was to identify forest and rangeland fire hazards using NOAA / AVHRR in Kayamaki Wildlife Refuge. For the purpose of this study, the history of the fire-burns occurred in MODIS products...
متن کامل