Uptake of water via branches helps timberline conifers refill embolized xylem in late winter.

نویسندگان

  • Stefan Mayr
  • Peter Schmid
  • Joan Laur
  • Sabine Rosner
  • Katline Charra-Vaskou
  • Birgit Dämon
  • Uwe G Hacke
چکیده

Xylem embolism is a limiting factor for woody species worldwide. Conifers at the alpine timberline are exposed to drought and freeze-thaw stress during winter, which induce potentially lethal embolism. Previous studies indicated that timberline trees survive by xylem refilling. In this study on Picea abies, refilling was monitored during winter and spring seasons and analyzed in the laboratory and in situ experiments, based on hydraulic, anatomical, and histochemical methods. Refilling started in late winter, when the soil was frozen and soil water not available for the trees. Xylem embolism caused up to 86.2% ± 3.1% loss of conductivity and was correlated with the ratio of closed pits. Refilling of xylem as well as recovery in shoot conductance started in February and corresponded with starch accumulation in secondary phloem and in the mesophyll of needles, where we also observed increasing aquaporin densities in the phloem and endodermis. This indicates that active, cellular processes play a role for refilling even under winter conditions. As demonstrated by our experiments, water for refilling was thereby taken up via the branches, likely by foliar water uptake. Our results suggest that refilling is based on water shifts to embolized tracheids via intact xylem, phloem, and parenchyma, whereby aquaporins reduce resistances along the symplastic pathway and aspirated pits facilitate isolation of refilling tracheids. Refilling must be taken into account as a key process in plant hydraulics and in estimating future effects of climate change on forests and alpine tree ecosystems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Frost drought in conifers at the alpine timberline: xylem dysfunction and adaptations.

Drought stress can cause xylem embolism in trees when the water potential (psi) in the xylem falls below specific vulnerability thresholds. At the alpine timberline, frost drought is known to cause excessive winter embolism unless xylem vulnerability or transpiration is sufficiently reduced to avoid critical psi. We compared annual courses of psi and embolism in Picea abies, Pinus cembra, Pinus...

متن کامل

Winter at the alpine timberline. Why does embolism occur in norway spruce but not in stone pine?

Conifers growing at the alpine timberline are exposed to frost drought and freeze-thaw cycles during winter-stress factors known to induce embolism in tree xylem. The two dominant species of the European Central Alps timberline were studied: Norway spruce (Picea abies [L.] Karst) and stone pine (Pinus cembra), which usually reaches higher altitudes. We hypothesized to find embolism only at the ...

متن کامل

Mediterranean climate effects. I. Conifer water use across a Sierra Nevada ecotone.

Xylem water potential of the midelevation conifers Pinus jeffreyi, Pinus lambertiana, Abies concolor, and Calocedrus decurrens, the higher elevation Pinus monticola and Abies magnifica, and co-occurring evergreen angiosperm shrubs, together with soil moisture under these plants, were monitored at three sites on the Kern Plateau in the southernmost Sierra Nevada Range of California. Site locatio...

متن کامل

Xylem embolism in response to freeze-thaw cycles and water stress in ring-porous, diffuse-porous, and conifer species.

Vulnerability to xylem embolism by freeze-thaw cycles and water stress was quantified in ring-porous (Quercus gambelii Nutt.), diffuse-porous (Populus tremuloides Michx., Betula occidentalis Hook.), and conifer species (Abies lasiocarpa Nutt., Juniperus scopulorum Sarg.). Embolism was measured by its reduction of xylem hydraulic conductivity; it was induced by xylem tension (water-stress respon...

متن کامل

Monitoring of Freezing Dynamics in Trees: A Simple Phase Shift Causes Complexity.

During winter, trees have to cope with harsh conditions, including extreme freeze-thaw stress. This study focused on ice nucleation and propagation, related water shifts and xylem cavitation, as well as cell damage and was based on in situ monitoring of xylem (thermocouples) and surface temperatures (infrared imaging), ultrasonic emissions, and dendrometer analysis. Field experiments during lat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 164 4  شماره 

صفحات  -

تاریخ انتشار 2014