Investigation of the regenerative and cascadability properties of optical signal processing devices at high bit-rates

نویسنده

  • Giancarlo Gavioli
چکیده

This thesis investigates the use of Semiconductor Optical Amplifiers (SOA) for 10 and 40Gb/s all-optical 3R signal regeneration and wavelength conversion for application to advanced high-speed all-optical WDM networks. Detailed experimental characterisation of the magnitude and the time scales of inter­ band nonlinear effects in SOA is carried out. The regenerative properties of SOA gates are theoretically investigated and related to the SOA physical parameters by means of deriving the SOA gate transfer function. A novel configuration for all-optical regeneration based on Polarisation Switching in an SOA-assisted Sagnac Interferometer (PSSI) is proposed and used to demonstrate, for the first time, multi-channel simultaneous 3R regeneration. This scheme allows to significantly enhance the switching frequency of the SOA, demonstrating error-free regeneration of 40Gb/s signal with long PRBS sequences using an SOA with carrier lifetime exceeding 250ps. The reshaping and retiming ability of the scheme are also assessed experimentally at bit-rate of 40Gb/s, to show the largest distortion tolerance range published to date for regeneration. The scheme is also used to demonstrate 40 to lOGb/s demultiplexing. The cascadability of optical regenerators and wavelength converters is also investigated experimentally. The impact of varying the inter-regenerator spacing in transmission with cascaded wavelength conversion and 3R regeneration over transoceanic distances, is experimentally investigated for the first time, using a novel reconflgurable fibre loop. These results show that a trade-off exists between the transmission signal Q-factor and the inter-regenerator spacing, which depends on the regenerator transfer function characteristics, and thus can be predicted from the SOA parameters. In 40Gb/s transmission with optical regeneration it was demonstrated that the use of an optical regenerator before the electrical receiver increases the power margin and maximum error-free transmission distance at 40Gb/s in excess of 100km. Finally a novel concept for multi-channel wavelength conversion and regeneration is presented utilising an integrated SOA array in a novel configuration to demonstrate, for the first time, simultaneous regenerative wavelength conversion of lOGb/s signals. This also shows the potential for large scale monolithic integration for optical processing applications in WDM networks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

All-optical Label Swapping Techniques for Optical Packets at Bit-rate Beyond 160 Gb/s

In this paper two different paradigms to realize a scalable all-optical packet switch with label swapping will be presented. All the functions required for switching the packets are based on all-optical signal processing without any electronic control. This allows very low latency and potential photonic integration of the systems. We report for both techniques experimental results showing the r...

متن کامل

A Quantitative Investigation on the Effect of Edge Enhancement for Improving Visual Acuity at Different Levels of Contrast

Background: The major limitation in human vision is refractive error. Auxiliary equipment and methods for these people are not always available. In addition, limited range of accommodation in adult people when switching from a far point to a near point is not simply possible. In this paper, we are looking for solutions to use the facilities of digital image processing and displaying to improve ...

متن کامل

Design of Arrayed Waveguide Grating based Optical Switch for High Speed Optical Networks

This paper demonstrates the design of an Arrayed Waveguide Gratings (AWG) based optical switch. In the design both physical and network layer analysis is performed. The physical layer power and noise analysis is done to obtain Bit Error Rate (BER). This has been found that at the higher bit rates, BER is not affected with number of buffer modules. Network layer analysis is done to obtain perfor...

متن کامل

High-speed All- Optical Time Division Multiplexed Node

In future high-speed self-routing photonic networks based on all-optical time division multiplexing (OTDM) it is highly desirable to carry out packet switching, clock recovery and demultplexing in the optical domain in order to avoid the bottleneck due to the optoelectronics conversion. In this paper we propose a self-routing OTDM node structure composed of an all-optical router and demultiplex...

متن کامل

Optimum Drill Bit Selection by Using Bit Images and Mathematical Investigation

This study is designed to consider the two important yet often neglected factors, which are factory recommendation and bit features, in optimum bit selection. Image processing techniques have been used to consider the bit features. A mathematical equation, which is derived from a neural network model, is used for drill bit selection to obtain the bit’s maximum penetration rate that corresponds ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013