C≡N stretching vibration of 5-cyanotryptophan as an infrared probe of protein local environment: what determines its frequency?
نویسندگان
چکیده
Recently it has been suggested that the C≡N stretching vibration of a tryptophan analog, 5-cyanotryptophan, could be used as an infrared probe of the local environment, especially the hydration status, of tryptophan residues in proteins. However, the factors that influence the frequency of this vibrational mode are not understood. To determine these factors, herein we carried out linear and nonlinear infrared measurements on the C≡N stretching vibration of the sidechain of 5-cyanotryptophan, 3-methyl-5-cyanoindole, in a series of protic and aprotic solvents. We found that while the C≡N stretching frequencies obtained in these solvents do not correlate well with any individual Kamlet-Taft solvent parameter, i.e., π* (polarizability), β (hydrogen bond accepting ability), and α (hydrogen bond donating ability), they do however, collapse on a straight line when plotted against σ = π* + β - α. This linear relationship provides a firm indication that both specific interactions, i.e., hydrogen-bonding interactions with the C≡N (through α) and indole N-H (through β) groups, and non-specific interactions with the molecule (through π*) work together to determine the C≡N stretching frequency, thus laying a quantitative framework for applying 5-cyanotryptophan to investigate the microscopic environment of proteins in a site-specific manner. Furthermore, two-dimensional and pump-probe infrared measurements revealed that a significant portion (∼31%) of the ground state bleach signal has a decay time constant of ∼12.3 ps, due to an additional vibrational relaxation channel, making it possible to use 5-cyanotryptophan to probe dynamics occurring on a timescale on the order of tens of picoseconds.
منابع مشابه
Vibrational dynamics and solvatochromism of the label SCN in various solvents and hemoglobin by time dependent IR and 2D-IR spectroscopy.
We investigated the characteristics of the thiocyanate (SCN) functional group as a probe of local structural dynamics for 2D-IR spectroscopy of proteins, exploiting the dependence of vibrational frequency on the environment of the label. Steady-state and time-resolved infrared spectroscopy are performed on the model compound methylthiocyanate (MeSCN) in solvents of different polarity, and compa...
متن کاملN-H stretching excitations in adenosine-thymidine base pairs in solution: pair geometries, infrared line shapes, and ultrafast vibrational dynamics.
We explore the N-H stretching vibrations of adenosine-thymidine base pairs in chloroform solution with linear and nonlinear infrared spectroscopy. Based on estimates from NMR measurements and ab initio calculations, we conclude that adenosine and thymidine form hydrogen bonded base pairs in Watson-Crick, reverse Watson-Crick, Hoogsteen, and reverse Hoogsteen configurations with similar probabil...
متن کاملThe Effects of α-Helical Structure and Cyanylated Cysteine on Each Other
Beta-thiocyanatoalanine, or cyanylated cysteine, is an artificial amino acid that can be introduced at solvent-exposed cysteine residues in proteins via chemical modification. Its facile post-translational synthesis means that it may find broad use in large protein systems as a probe of site-specific structure and dynamics. The C[triple bond]N stretching vibration of this artificial side chain ...
متن کاملConformational Ensembles of Calmodulin Revealed by Nonperturbing Site-Specific Vibrational Probe Groups
Seven native residues on the regulatory protein calmodulin, including three key methionine residues, were replaced (one by one) by the vibrational probe amino acid cyanylated cysteine, which has a unique CN stretching vibration that reports on its local environment. Almost no perturbation was caused by this probe at any of the seven sites, as reported by CD spectra of calcium-bound and apo calm...
متن کاملCorrelating photoacidity to hydrogen-bond structure by using the local O-H stretching probe in hydrogen-bonded complexes of aromatic alcohols.
To assess the potential use of O-H stretching modes of aromatic alcohols as ultrafast local probes of transient structures and photoacidity, we analyze the response of the O-H stretching mode in the 2-naphthol-acetonitrile (2N-CH3CN) 1:1 complex after UV photoexcitation. We combine femtosecond UV-infrared pump-probe spectroscopy and a theoretical treatment of vibrational solvatochromic effects ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 18 10 شماره
صفحات -
تاریخ انتشار 2016