Evolutionary Design of Artificial Neural Networks Using a Descriptive Encoding Language
نویسنده
چکیده
Title of dissertation: Evolutionary Design of Artificial Neural Networks Using a Descriptive Encoding Language Jae-Yoon Jung, Doctor of Philosophy, 2007 Dissertation directed by: Dr. James A. Reggia Department of Computer Science Automated design of artificial neural networks by evolutionary algorithms (neuroevolution) has generated much recent research both because successful approaches will facilitate wide-spread use of intelligent systems based on neural networks, and because it will shed light on our understanding of how “real” neural networks may have evolved. The main challenge in neuroevolution is that the search space of neural network architectures and their corresponding optimal weights can be high-dimensional and disparate, and therefore evolution may not discover an optimal network even if it exists. In this dissertation, I present a high-level encoding language that can be used to restrict the general search space of neural networks, and implement a problemindependent design system based on this encoding language. I show that this encoding scheme works effectively in 1) describing the search space in which evolution occurs; 2) specifying the initial configuration and evolutionary parameters; and 3) generating the final neural networks resulting from the evolutionary process in a human-readable manner. Evolved networks for “n-partition problems” demonstrate that this approach can evolve high-performance network architectures, and show by example that a small parsimony factor in the fitness measure can lead to the emergence of modular networks. Further, this approach is shown to work for encoding recurrent neural networks for a temporal sequence generation problem, and the tradeoffs between various recurrent network architectures are systematically compared via multi-objective optimization. Finally, it is shown that this system can be extended to address reinforcement learning problems by evolving architectures and connection weights in a hierarchical manner. Experimental results support the conclusion that hierarchical evolutionary approaches integrated in a system having a high-level descriptive encoding language can be useful in designing modular networks, including those that have recurrent connectivity. Evolutionary Design of Artificial Neural Networks Using a Descriptive Encoding Language
منابع مشابه
A Descriptive Encoding Language for Evolving Modular Neural Networks
Evolutionary algorithms are a promising approach for the automated design of artificial neural networks, but they require a compact and efficient genetic encoding scheme to represent repetitive and recurrent modules in networks. Here we introduce a problem-independent approach based on a human-readable descriptive encoding using a highlevel language. We show that this approach is useful in desi...
متن کاملThe Automated Design of Artificial Neural Networks Using Evolutionary Computation
Neuroevolution refers to the design of artificial neural networks using evolutionary algorithms. It has been one of the promising application areas for evolutionary computation, as neural network design is still being done by human experts and automating the design process by evolutionary approaches will benefit developing intelligent systems and understanding “real” neural networks. The core i...
متن کاملDetermining water quality along the river with using evolutionary artificial neural networks (Case Study, Karoon River , Shahid Abbaspur-Arab Asad reach)
Rivers are important as the main source of supply for drinking, agriculture and industry.However, drinking water quality in terms of qualitative parameters, is the most important variable. Studias and predicting changes in quality parameters along a river, are one of the goals of water resources planners and managers. In this regard, many water quality models in order to maintain better water ...
متن کاملUsing the hybrid Taguchi experimental design method – TOPSIS to identify the most suitable artificial neural networks used in energy forecasting
The use of artificial neural networks (ANN) in forecasting has many applications. Appropriate design of ANN parameters enhances the performance and accuracy of neural network models. Most studies use a trial and error approach in setting the value of ANN parameters. Other methods used to determine the best structure of a neural network only use a single evaluation criterion to determine the ap...
متن کاملForecasting S&P 500 index using artificial neural networks and design of experiments
The main objective of this research is to forecast the daily direction of Standard & Poor's 500 (S&P 500) index using an artificial neural network (ANN). In order to select the most influential features (factors) of the proposed ANN that affect the daily direction of S&P 500 (the response), design of experiments are conducted to determine the statistically significant factors among 27 potential...
متن کامل