Squeeze-film effects in MEMS devices with perforated plates for small amplitude vibration
نویسندگان
چکیده
Squeeze-film effects of perforated plates for small amplitude vibration are analyzed through modified Reynolds equation (MRE). The analytical analysis reckons in most important influential factors: compressibility of the air, border effects, and the resistance caused by vertical air flow passing through perforated holes. It is found that consideration of air compressibility is necessary for high operating frequency and small ratio of the plate width to the attenuation length. The analytical results presented in this paper agree with ANSYS simulation results better than that under the air incompressibility assumption. The analytical analysis can be used to estimate the squeeze-film effects causing damping and stiffness added to the system. Since the value of Reynolds number involved in this paper is low (< 1), inertial effects are neglected.
منابع مشابه
Evaluation of Squeeze-film Damping Effects in MEMS Perforated Plates
In this paper, analytical and numerical methods for simulating squeeze-film air damping affecting suspended and perforated movable micro-surfaces are analyzed. Numerical solutions are obtained by full 3-D Navier-Stokes numerical analysis, carried out by a commercial finite element code, COMSOL Multiphysics, and are compared with those obtained using different analytical models proposed in liter...
متن کاملDynamics of nonlinear rectangular plates subjected to an orbiting mass based on shear deformation plate theory
In this paper, transverse and longitudinal vibration of nonlinear plate under exciting of orbiting mass is considered based on first-order shear deformation theory. The nonlinear governing equation of motion are discretized by the finite element method in combination with Newmark’s time integration scheme under von Karman strain-displacement assumptions. For validation of method and formulation...
متن کاملThe Performance Effects of Squeeze Film Stiffness on Non-resonate Interferometric Inertial Sensors
This paper studies the nonlinear effects of squeeze film stiffening on the performance of a high resolution MEMS nonresonant inertial sensor. It is shown that these effects introduce a surprising dynamic response that extends the operational frequency range of the devices by retarding the resonate response. In addition, this performance advantage will occur without the traditional gain trade-of...
متن کاملAn Analytical Model for Squeeze-Film Damping of Perforated Torsional Microplates Resonators
Squeeze-film damping plays a significant role in the performance of micro-resonators because it determines their quality factors. Perforations in microstructures are often used to control the squeeze-film damping in micro-resonators. To model the perforation effects on the squeeze-film damping, many analytical models have been proposed, however, most of the previous models have been concerned w...
متن کاملViscous damping of perforated planar micromechanical structures.
The paper gives an analytical approximation to the viscous damping coefficient due to the motion of a gas between a pair of closely spaced fluctuating plates in which one of the plates contains a regular system of circular holes. These types of structures are important parts of many microelectromechanical devices realized in MEMS technology as microphones, microaccelerometers, resonators, etc.T...
متن کامل