Quantifying understorey vegetation in the US Lake States: a proposed framework to inform regional forest carbon stocks
نویسندگان
چکیده
The contribution of understorey vegetation (UVEG) to forest ecosystem biomass and carbon (C) across diverse forest types has, to date, eluded quantification at regional and national scales. Efforts to quantify UVEG C have been limited to field-intensive studies or broad-scale modelling approaches lacking field measurements. Although large-scale inventories of UVEG C are not common, speciesand community-level inventories of vegetation structure are available and may prove useful in quantifying UVEG C stocks. This analysis developed a general framework for estimating UVEG C stocks by employing per cent cover estimates of UVEG from a region-wide forest inventory coupled with an estimate of maximum UVEG C across the US Lake States (i.e. Michigan, Minnesota and Wisconsin). Estimates of UVEG C stocks from this approach reasonably align with expected C stocks in the study region, ranging from 0.86+0.06 Mg ha in red pine-dominated to 1.59+0.06 Mg ha for aspen/birch-dominated forest types. Although the data employed here were originally collected to assess broad-scale forest structure and diversity, this study proposes a framework for using UVEG inventories as a foundation for estimating C stocks in an often overlooked, yet important ecosystem C pool.
منابع مشابه
Potential of Landsat-8 spectral indices to estimate forest biomass
Forest ecosystems are among the largest terrestrial carbon reservoirs on our planet earth thus playing a vital role in global carbon cycle. Presently, remote sensing techniques provide proper estimates of forest biomass and quantify carbon stocks. The present study has explored Landsat-8 sensor product and evaluated its application in biomass mapping and estimation. The specific objectives were...
متن کاملA Framework for Assessing Global Change Risks to Forest Carbon Stocks in the United States
Among terrestrial environments, forests are not only the largest long-term sink of atmospheric carbon (C), but are also susceptible to global change themselves, with potential consequences including alterations of C cycles and potential C emission. To inform global change risk assessment of forest C across large spatial/temporal scales, this study constructed and evaluated a basic risk framewor...
متن کاملMulti-angular Satellite Remote Sensing and Forest Inventory Data for Carbon Stock and Sink Capacity in the Eastern United States Forest Ecosystems
Terrestrial vegetation plays a major role in regulating the global carbon cycle and in turn the climate of the Earth system. It is believed that the North America forest ecosystems are a net sink for anthropogenic carbon. However, significant uncertainties exist in quantifying this claim. Inaccurate and incomplete characterization of forest vegetation is among the main causes to these uncertain...
متن کاملEstimation of biomass, carbon stocks and soil sequestration of Gowatr mangrove forests, Gulf of Oman
The mangrove forest ecosystem is known to possess a variety of ecosystem services, including high rates of carbon sequestration, storage and mitigating climate change through reduced deforestation. This study was carried out in the mangrove forests of Gowatr Bay, Gulf of Oman during 2017-18 to quantify biomass and carbon stocks of all components of this forest, including live and dead trees, so...
متن کاملMonitoring Network Confirms Land Use Change is a Substantial Component of the Forest Carbon Sink in the eastern United States.
Quantifying forest carbon (C) stocks and stock change within a matrix of land use (LU) and LU change is a central component of large-scale forest C monitoring and reporting practices prescribed by the Intergovernmental Panel on Climate Change (IPCC). Using a region-wide, repeated forest inventory, forest C stocks and stock change by pool were examined by LU categories. In eastern US forests, LU...
متن کامل