On constraint qualifications in directionally differentiable multiobjective optimization problems
نویسندگان
چکیده
We consider a multiobjective optimization problem with a feasible set defined by inequality and equality constraints such that all functions are, at least, Dini differentiable (in some cases, Hadamard differentiable and sometimes, quasiconvex). Several constraint qualifications are given in such a way that generalize both the qualifications introduced by Maeda and the classical ones, when the functions are differentiable. The relationships between them are analyzed. Finally, we give several Kuhn-Tucker type necessary conditions for a point to be Pareto minimum under the weaker constraint qualifications here proposed.
منابع مشابه
On Sequential Optimality Conditions without Constraint Qualifications for Nonlinear Programming with Nonsmooth Convex Objective Functions
Sequential optimality conditions provide adequate theoretical tools to justify stopping criteria for nonlinear programming solvers. Here, nonsmooth approximate gradient projection and complementary approximate Karush-Kuhn-Tucker conditions are presented. These sequential optimality conditions are satisfied by local minimizers of optimization problems independently of the fulfillment of constrai...
متن کاملNew second-order optimality conditions in multiobjective optimization problems: Differentiable case
To get positive Lagrange multipliers associated with each of the objective function, Maeda [Constraint qualification in multiobjective optimization problems: Differentiable case, J. Optimization Theory Appl., 80, 483–500 (1994)], gave some special sets and derived some generalized regularity conditions for first-order Karush–Kuhn– Tucker (KKT)-type necessary conditions of multiobjective optimiz...
متن کاملAn algorithm for approximating nondominated points of convex multiobjective optimization problems
In this paper, we present an algorithm for generating approximate nondominated points of a multiobjective optimization problem (MOP), where the constraints and the objective functions are convex. We provide outer and inner approximations of nondominated points and prove that inner approximations provide a set of approximate weakly nondominated points. The proposed algorithm can be appl...
متن کاملEfficiency and Duality in Nondifferentiable Multiobjective Programming Involving Directional Derivative
In this paper, we introduce a new class of generalized dI-univexity in which each component of the objective and constraint functions is directionally differentiable in its own direction di for a nondifferentiable multiobjective programming problem. Based upon these generalized functions, sufficient optimality conditions are established for a feasible point to be efficient and properly efficien...
متن کاملNew optimality conditions for multiobjective fuzzy programming problems
In this paper we study fuzzy multiobjective optimization problems defined for $n$ variables. Based on a new $p$-dimensional fuzzy stationary-point definition, necessary efficiency conditions are obtained. And we prove that these conditions are also sufficient under new fuzzy generalized convexity notions. Furthermore, the results are obtained under general differentiability hypothesis.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- RAIRO - Operations Research
دوره 38 شماره
صفحات -
تاریخ انتشار 2004