Intestinal Brush Border Assembly Driven by Protocadherin-Based Intermicrovillar Adhesion
نویسندگان
چکیده
Transporting epithelial cells build apical microvilli to increase membrane surface area and enhance absorptive capacity. The intestinal brush border provides an elaborate example with tightly packed microvilli that function in nutrient absorption and host defense. Although the brush border is essential for physiological homeostasis, its assembly is poorly understood. We found that brush border assembly is driven by the formation of Ca(2+)-dependent adhesion links between adjacent microvilli. Intermicrovillar links are composed of protocadherin-24 and mucin-like protocadherin, which target to microvillar tips and interact to form a trans-heterophilic complex. The cytoplasmic domains of microvillar protocadherins interact with the scaffolding protein, harmonin, and myosin-7b, which promote localization to microvillar tips. Finally, a mouse model of Usher syndrome lacking harmonin exhibits microvillar protocadherin mislocalization and severe defects in brush border morphology. These data reveal an adhesion-based mechanism for brush border assembly and illuminate the basis of intestinal pathology in patients with Usher syndrome. PAPERFLICK:
منابع مشابه
Myosin-7b Promotes Distal Tip Localization of the Intermicrovillar Adhesion Complex
Transporting epithelial cells interact with the luminal environment using a tightly packed array of microvilli known as the brush border. During intestinal epithelial differentiation, microvillar packing and organization are driven by cadherin-dependent adhesion complexes that localize to the distal tips of microvilli, where they drive physical interactions between neighboring protrusions. Alth...
متن کاملCell–cell and cell–matrix interactions
Intracellular interactions shape cells Intestinal epithelial cells build a brush border of microvilli at their apical surfaces that mediates nutrient absorption and host defense. Scott Crawley (Tyska Laboratory, Vanderbilt University Medical Center) showed that brush border assembly is driven by trans interactions between protocadherin-24 and mucin-like protocadherin at the tips of adjacent mic...
متن کاملThe cell adhesion molecule Fasciclin2 regulates brush border length and organization in Drosophila renal tubules.
Multicellular organisms rely on cell adhesion molecules to coordinate cell-cell interactions, and to provide navigational cues during tissue formation. In Drosophila, Fasciclin 2 (Fas2) has been intensively studied due to its role in nervous system development and maintenance; yet, Fas2 is most abundantly expressed in the adult renal (Malpighian) tubule rather than in neuronal tissues. The role...
متن کاملIdentification and expression analysis of the human mu-protocadherin gene in fetal and adult kidneys.
We recently cloned mu-protocadherin, a developmentally regulated cell adhesion molecule that contains an extracellular region with four cadherin-like ectodomains and a triply repeating mucin domain in its longer isoform. Expression of mu-protocadherin in L929 cells resulted in cellular aggregation, confirming its role in intercellular adhesion. We now identify the human mu-protocadherin ortholo...
متن کاملRemodeling of the Intestinal Brush Border Underlies Adhesion and Virulence of an Enteric Pathogen
UNLABELLED Intestinal colonization by Vibrio parahaemolyticus-the most common cause of seafood-borne bacterial enteritis worldwide-induces extensive disruption of intestinal microvilli. In orogastrically infected infant rabbits, reorganization of the apical brush border membrane includes effacement of some microvilli and marked elongation of others. All diarrhea, inflammation, and intestinal pa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cell
دوره 157 شماره
صفحات -
تاریخ انتشار 2014