Characteristic noise features in light transmission across membrane protein undergoing photocycle.

نویسندگان

  • Anshuman J Das
  • Sabyasachi Mukhopadhyay
  • K S Narayan
چکیده

We demonstrate a technique based on noise measurements which can be utilized to study dynamical processes in protein assembly. Direct visualization of dynamics in membrane protein system such as bacteriorhodopsin (bR) upon photostimulation are quite challenging. bR represents a model system where the stimulus-triggered structural dynamics and biological functions are directly correlated. Our method utilizes a pump-probe near field microscopy method in the transmission mode and involves analyzing the transmittance fluctuations from a finite size of molecular assembly. Probability density distributions indicating the effects of finite size and statistical correlations appear as a characteristic frequency distribution in the noise spectra of bR whose origin can be traced to photocycle kinetics. Valuable insight into the molecular processes were obtained from the noise studies of bR and its mutant D96N as a function of external parameters such as temperature, humidity or presence of an additional pump source.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biological Significance of Photoreceptor Photocycle Length: VIVID Photocycle Governs the Dynamic VIVID-White Collar Complex Pool Mediating Photo-adaptation and Response to Changes in Light Intensity

Most organisms on earth sense light through the use of chromophore-bearing photoreceptive proteins with distinct and characteristic photocycle lengths, yet the biological significance of this adduct decay length is neither understood nor has been tested. In the filamentous fungus Neurospora crassa VIVID (VVD) is a critical player in the process of photoadaptation, the attenuation of light-induc...

متن کامل

The Effect of Lyophilization on Light Transmission of Amniotic Membrane: A Comparison with Rabbit Cornea

Background & Aims: Amniotic membrane persists for a long time after ocular transplantation (as corneal substitute) and can affect light transmission (transparency). The aim of this study was to evaluate the transparency of amniotic membrane after freeze-drying (lyophilization) and to compare the results with transparency of rabbit cornea. Methods: Transparency of rabbits’ corneas and fresh and ...

متن کامل

Biophysics Infrared evidence that the Schiff base of bacteriorhodopsin is protonated : bR 570 and K intermediates ( purple membrane / resonance

It is possible, by using Fourier-transform infrared (FTIR) difference spectroscopy, to detect the conformational changes occurring in both the protein and the chromophore of bacteriorhodopsin during the photocycle. In contrast to Raman spectroscopy, a laser is unnecessary and hence the problem of a perturbing probe beam is eliminated. Furthermore, the relatively high signal-to-noise ratio obtai...

متن کامل

Carboxyl groups and the proton pump of bacteriorhodopsin.

The purple membrane isolated from Halobacterium halobium contains only a single protein, bacteriorhodopsin, which functions as a light-driven proton pump. Substantial structural information has been obtained which has led to specific models of protein structure in the membrane (Engelman et al., 1982; Huang et al., 1982; Agard & Stroud, 1982). The retinal chromophore of bacteriorhodopsin is boun...

متن کامل

Molecular mechanism of protein-retinal coupling in bacteriorhodopsin.

Bacteriorhodopsin is a membrane protein that functions as a light-driven proton pump. Each cycle of proton transport is initiated by the light-induced isomerization of retinal from the all-trans to 13-cis configuration and is completed by the protein-driven reisomerization of retinal to the all-trans configuration. Previous studies have shown that replacement of Leu-93, a residue in close proxi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 134 7  شماره 

صفحات  -

تاریخ انتشار 2011