Divalent cations modulate N-methyl-D-aspartate receptor function at the glycine site.
نویسندگان
چکیده
The modulation of the N-methyl-D-aspartate (NMDA) receptor (NMDAR) by divalent cations was examined using (+)-5-methyl-10, 11-dihydro-5H-dibenzo[a,d]cyclohepten 5,10-imine maleate ([(3)H]MK-801) binding as a functional indicator of NMDAR function. Ca(2+) and Mg(2+) produce a biphasic effect on the binding of [(3)H]MK-801 to the NMDAR channel in extensively washed adult rat brain membranes. Concentrations of Ca(2+) and Mg(2+) between 1 and 600 microM potentiate binding, but higher concentrations inhibit binding. The potentiating effect of Ca(2+) and Mg(2+) on [(3)H]MK-801 binding is due to an increase in the maximal number of binding sites (B(max)) with no effect on binding affinity (K(d)). Ca(2+)- and Mg(2+)induced potentiation is the result of an apparent increase in the affinity of the NMDAR for glycine. The ontogeny of NMDAR potentiation by Ca(2+) and Mg(2+) was also investigated. The number of [(3)H]MK-801 binding sites associated with divalent cation potentiation are present at low levels shortly after birth, and increase to peak level at 17 days of age before declining to adult levels. The potency of Ca(2+) and Mg(2+) to stimulate [(3)H]MK-801 binding did not change as a function of age. Lead (Pb(2+)) and zinc (Zn(2+)), potent inhibitors of the NMDAR, antagonize NMDAR potentiation by Ca(2+) and Mg(2+). These findings indicate that divalent cations differentially regulate NMDAR function by modulation of the glycine site. The NMDAR glycine site may be important in the regulation of glutamatergic neurotransmission by physiologically and toxicologically relevant cations.
منابع مشابه
Two affinity states of N-methyl-D-aspartate recognition sites: modulation by cations.
Previous studies have indicated that inorganic and organic cations can markedly affect parameters of the function of the N-methyl-D-aspartate receptor ionophore complex. As these effects may involve modulation of agonist binding, the purpose of our study was to investigate the stimulatory effect of mono- and divalent cations on binding properties of glutamate/N-methyl-D-aspartate recognition si...
متن کاملIdentity of Endogenous NMDAR Glycine Site Agonist in Amygdala Is Determined by Synaptic Activity Level
Mechanisms of N-methyl-D-aspartate receptor-dependent synaptic plasticity contribute to the acquisition and retention of conditioned fear memory. However, synaptic rules which may determine the extent of N-methyl-D-aspartate receptor activation in the amygdala, a key structure implicated in fear learning, remain unknown. Here we show that the identity of the N-methyl-D-aspartate receptor glycin...
متن کاملGlycine site of the excitatory amino acid N-methyl-D-aspartate receptor in neonatal and adult brain.
The N-methyl-D-aspartate (NMDA) receptor complex in brain is a glutamate receptor subtype with several recognition sites including a glycine site that is able to modulate and activate allosterically the receptor. This receptor may be important in the regulation of developmental synaptic plasticity. The release of glutamate and consequent overstimulation of NMDA receptors that follows hypoxia-is...
متن کاملIonic permeability characteristics of the N-methyl-D-aspartate receptor channel
N-methyl-D-aspartate (NMDA) receptor channels in cultured CA1 hippocampal neurons were studied using patch-clamp techniques. The purpose of the research was to determine the occupancy of the channel by permeant cations and to determine the influence of charged residues in or near the pore. The concentration dependence of permeability ratios, the mole-fraction dependence of permeability ratios, ...
متن کاملThe effect of morphine dependence on expression of hippocampal N-methyl-D-aspartate receptor subunits in male rats
Introduction: N-methyl-D-aspartate (NMDA) receptors play a pivotal role in the development of tolerance and physical dependence to opiates. Activation of NMDA receptors involves the induction of long term potentiation (LTP) in hippocampus. Our previous study suggested that chronic oral administration of morphine enhanced NMDA dependent LTP in the CA1 area of hippocampal slices of rats. The p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 290 3 شماره
صفحات -
تاریخ انتشار 1999