Monte Carlo Convex Hull Model for classification of traditional Chinese paintings
نویسندگان
چکیده
While artists demonstrate their individual styles through paintings and drawings, how to describe such artistic styles well selected visual features towards computerized analysis of the arts remains to be a challenging research problem. In this paper, we propose an integrated feature-based artistic descriptor with Monte Carlo Convex Hull (MCCH) feature selection model and support vector machine (SVM) for characterizing the traditional Chinese paintings and validate its effectiveness via automated classification of Chinese paintings authored by well-known Chinese artists. The integrated artistic style descriptor essentially contains a number of visual features including a novel feature of painting composition and object feature, each of which describes one element of the artistic style. In order to ensure an integrated discriminating power and certain level of adaptability to the variety of artistic styles among different artists, we introduce a novel feature selection method to process the correlations and the synergy across all elements inside the integrated feature and hence complete the proposed style-based descriptor design. Experiments on classification of Chinese paintings via a parallel MCCH model illustrate that the proposed descriptor outperforms the existing representative technique in terms of precision and recall rates.
منابع مشابه
Simulation Studies of A Phenomenological Model for the Assembly of Elongated Virus Capsids
We extend our previously developed general approach (1) to study a phenomenological model in which the simulated packing of hard, attractive spheres on a prolate spheroid surface with convexity constraints produces structures identical to those of prolate virus capsid structures. Our simulation approach combines the traditional Monte Carlo method with the method of random sampling on an ellipso...
متن کاملA Brief Note on Maximum Realisable Mcmc Classifiers
We present a novel and powerful strategy for estimating and combining classi ers via ROC curves, decision analysis theory and MCMC simulation. This paradigm also allows us to select samples from an MCMC run in a parsimonious and optimal fashion. Each ROC curve, corresponds to a sample (classi er) obtained with a full Bayesian model, which treats the model dimension, model parameters, regularisa...
متن کاملSweep Line Algorithm for Convex Hull Revisited
Convex hull of some given points is the intersection of all convex sets containing them. It is used as primary structure in many other problems in computational geometry and other areas like image processing, model identification, geographical data systems, and triangular computation of a set of points and so on. Computing the convex hull of a set of point is one of the most fundamental and imp...
متن کاملMonte Carlo Simulation to Compare Markovian and Neural Network Models for Reliability Assessment in Multiple AGV Manufacturing System
We compare two approaches for a Markovian model in flexible manufacturing systems (FMSs) using Monte Carlo simulation. The model which is a development of Fazlollahtabar and Saidi-Mehrabad (2013), considers two features of automated flexible manufacturing systems equipped with automated guided vehicle (AGV) namely, the reliability of machines and the reliability of AGVs in a multiple AGV jobsho...
متن کاملMartingale Property and Pricing for Time-homogeneous Diffusion Models in Finance by
The thesis studies the martingale properties, probabilistic methods and efficient unbiased Monte Carlo simulation methods for various time-homogeneous diffusion models commonly used in mathematical finance. Some of the popular stochastic volatility models such as the Heston model, the Hull-White model and the 3/2 model are special cases. The thesis consists of the following three parts: Part I ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neurocomputing
دوره 171 شماره
صفحات -
تاریخ انتشار 2016