Death effector domain protein PEA-15 potentiates Ras activation of extracellular signal receptor-activated kinase by an adhesion-independent mechanism.
نویسندگان
چکیده
PEA-15 is a small, death effector-domain (DED)-containing protein that was recently demonstrated to inhibit tumor necrosis factor-alpha-induced apoptosis and to reverse the inhibition of integrin activation due to H-Ras. This led us to investigate the involvement of PEA-15 in Ras signaling. Surprisingly, PEA-15 activates the extracellular signal receptor-activated kinase (ERK) mitogen-activated protein kinase pathway in a Ras-dependent manner. PEA-15 expression in Chinese hamster ovary cells resulted in an increased mitogen-activated protein kinase kinase and ERK activity. Furthermore, PEA-15 expression leads to an increase in Ras guanosine 5'-triphosphate loading. PEA-15 bypasses the anchorage dependence of ERK activation. Finally, the effects of PEA-15 on integrin signaling are separate from those on ERK activation. Heretofore, all known DEDs functioned in the regulation of apoptosis. In contrast, the DED of PEA-15 is essential for its capacity to activate ERK. The ability of PEA-15 to simultaneously inhibit apoptosis and potentiate Ras-to-Erk signaling may be of importance for oncogenic processes.
منابع مشابه
PEA-15 binding to ERK1/2 MAPKs is required for its modulation of integrin activation.
Activation of Raf-1 suppresses integrin activation, potentially through the activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2). However, bulk ERK1/2 activation does not correlate with suppression. PEA-15 reverses suppression of integrin activation and binds ERK1/2. Here we report that PEA-15 reversal of integrin suppression depends on its capacity to bind ERK1/2, indicating t...
متن کاملVanishin is a novel ubiquitinylated death-effector domain protein that blocks ERK activation.
The ERK (extracellular-signal regulated-kinase)/MAPK (mitogen-activated protein kinase) pathway can regulate transcription, proliferation, migration and apoptosis. The small DED (death-effector domain) protein PEA-15 (phosphoprotein enriched in astrocytes-15) binds ERK and targets it to the cytoplasm. Other DED-containing proteins including cFLIP and DEDD can also regulate signal transduction e...
متن کاملOncogenic Ras blocks anoikis by activation of a novel effector pathway independent of phosphatidylinositol 3-kinase.
Activated Ras, but not Raf, causes transformation of RIE-1 rat intestinal epithelial cells, demonstrating the importance of Raf-independent effector signaling in mediating Ras transformation. To further assess the contribution of Raf-dependent and Raf-independent function in oncogenic Ras transformation, we evaluated the mechanism by which oncogenic Ras blocks suspension-induced apoptosis, or a...
متن کاملStructure of ERK2 bound to PEA-15 reveals a mechanism for rapid release of activated MAPK
ERK1/2 kinases are the principal effectors of a central signalling cascade that converts extracellular stimuli into cell proliferation and migration responses and, when deregulated, can promote cell oncogenic transformation. The scaffolding protein PEA-15 is a death effector domain protein that directly interacts with ERK1/2 and affects ERK1/2 subcellular localization and phosphorylation. Here,...
متن کاملActivation of mitogen-activated protein kinase (mitogen-activated protein kinase/extracellular signal-regulated kinase) cascade by aldosterone.
Aldosterone in some tissues increases expression of the mRNA encoding the small monomeric G protein Ki-RasA. Renal A6 epithelial cells were used to determine whether induction of Ki-ras leads to concomitant increases in the total as well as active levels of Ki-RasA and whether this then leads to subsequent activation of its effector mitogen-activated protein kinase (MAPK/extracellular signal-re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular biology of the cell
دوره 11 9 شماره
صفحات -
تاریخ انتشار 2000