Recognition of facial expressions using Gabor wavelets and learning vector quantization
نویسندگان
چکیده
Facial expression recognition has potential applications in different aspects of day-to-day life not yet realized due to absence of effective expression recognition techniques. This paper discusses the application of Gabor filter based feature extraction in combination with learning vector quantization (LVQ) for recognition of seven different facial expressions from still pictures of the human face. The results presented here are better in several aspects from earlier work in facial expression recognition. Firstly, it is observed that LVQ based feature classification technique proposed in this study performs better in recognizing fear expressions than multilayer perceptron (MLP) based classification technique used in earlier work. Secondly, this study indicates that the Japanese Female Facial Expression (JAFFE) database contains expressers that expressed expressions incorrectly and these incorrect images adversely affect the development of a reliable facial expression recognition system. By excluding the two expressers from the data set, an improvement in recognition rate from 87.51% to 90.22% has been achieved. The present study, therefore, proves the feasibility of computer vision based facial expression recognition for practical applications like surveillance and human computer interaction. r 2007 Elsevier Ltd. All rights reserved.
منابع مشابه
ICA and Gabor representation for facial expression recognition
Two hybrid systems for classifying seven categories of human facial expression are proposed. The £rst system combines independent component analysis (ICA) and support vector machines (SVMs). The original face image database is decomposed into linear combinations of several basis images, where the corresponding coef£cients of these combinations are fed up into SVMs instead of an original feature...
متن کاملA Gabor Feature Classifier for Face Recognition
This paper describes a novel Gabor Feature Class$er (GFC) method for face recognition. The GFC method employs an enhanced Fisher discrimination model on an augmented Gabor feature vector; which is derived from the Gabor wavelet transformation o f f i c e images. The Gabor wavelets, whose kernels are similar to the 2 0 receptive field profiles of the nianinialian cortical simple cells, exhibit d...
متن کاملFace Detection using Gabor Wavelets and Neural Networks
This paper proposes new hybrid approaches for face recognition. Gabor wavelets representation of face images is an effective approach for both facial action recognition and face identification. Perform dimensionality reduction and linear discriminate analysis on the down sampled Gabor wavelet faces can increase the discriminate ability. Nearest feature space is extended to various similarity me...
متن کاملDehghani Face Detection using Gabor Wavelets and Neural Networks
This paper proposes new hybrid approaches for face recognition. Gabor wavelets representation of face images is an effective approach for both facial action recognition and face identification. Perform dimensionality reduction and linear discriminate analysis on the down sampled Gabor wavelet faces can increase the discriminate ability. Nearest feature space is extended to various similarity me...
متن کاملFacial Expression Recognition Based on Anatomical Structure of Human Face
Automatic analysis of human facial expressions is one of the challenging problems in machine vision systems. It has many applications in human-computer interactions such as, social signal processing, social robots, deceit detection, interactive video and behavior monitoring. In this paper, we develop a new method for automatic facial expression recognition based on facial muscle anatomy and hum...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Eng. Appl. of AI
دوره 21 شماره
صفحات -
تاریخ انتشار 2008