On Biaccessible Points in the Julia Set of a Cremer Quadratic Polynomial

نویسندگان

  • DIERK SCHLEICHER
  • SAEED ZAKERI
چکیده

We prove that the only possible biaccessible points in the Julia set of a Cremer quadratic polynomial are the Cremer fixed point and its preimages. This gives a partial answer to a question posed by C. McMullen on whether such a Julia set can contain any biaccessible point at all.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Biaccessible Points in the Julia Set of a Cremer Quadratic Polynomial Dierk Schleicher and Saeed Zakeri

We prove that the only possible biaccessible points in the Julia set of a Cremer quadratic polynomial are the Cremer fixed point and its preimages. This gives a partial answer to a question posed by C. McMullen on whether such a Julia set can contain any biaccessible point at all. §

متن کامل

Biaccessiblility in Quadratic Julia Sets Ii the Siegel and Cremer Cases

Let f be a quadratic polynomial which has an irrationally indi erent xed point Let z be a biaccessible point in the Julia set of f Then In the Siegel case the orbit of z must eventually hit the critical point of f In the Cremer case the orbit of z must eventually hit the xed point Siegel polynomials with biaccessible critical point certainly exist but in the Cremer case it is possible that biac...

متن کامل

On Biaccessible Points in the Julia Setof a Cremer Quadratic

We prove that the only possible biaccessible points in the Julia set of a Cremer quadraticpolynomialare the Cremer xed point and its preimages. This gives a partial answer to a question posed by C. McMullen on whether such a Julia set can contain any biaccessible point at all.

متن کامل

Biaccessibility in Quadratic Julia Sets

This paper consists of two nearly independent parts, both of which discuss the common theme of biaccessible points in the Julia set J of a quadratic polynomial f : z 7→ z + c. In Part I, we assume that J is locally-connected. We prove that the Brolin measure of the set of biaccessible points (through the basin of attraction of infinity) in J is zero except when f(z) = z−2 is the Chebyshev map f...

متن کامل

Biaccessibility in Quadratic Julia Sets I: the Locally-connected Case

Let f : z 7→ z + c be a quadratic polynomial whose Julia set J is locallyconnected. We prove that the Brolin measure of the set of biaccessible points in J is zero except when f(z) = z − 2 is the Chebyshev quadratic polynomial for which the corresponding measure is one. §

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999