Pressure-induced electronic topological transition in Sb2S3.

نویسندگان

  • Y A Sorb
  • V Rajaji
  • P S Malavi
  • U Subbarao
  • P Halappa
  • S C Peter
  • S Karmakar
  • C Narayana
چکیده

We report the high-pressure vibrational properties and a pressure-induced electronic topological transition in the wide bandgap semiconductor Sb2S3 (E g  =  1.7-1.8 eV) using Raman spectroscopy, resistivity and x-ray diffraction (XRD) studies. In this report, high-pressure Raman spectroscopy and resistivity studies of Sb2S3 have been carried out to 22 GPa and 11 GPa, respectively. We observed the softening of phonon modes [Formula: see text], [Formula: see text] and B 2g and a sharp anomaly in their line widths at 4 GPa. The resistivity studies corroborate this anomaly around similar pressures. The changes in resistivity as well as Raman line widths can be ascribed to the strong phonon-phonon coupling, indicating clear evidence of isostructural electronic topological transition in Sb2S3. The previously reported pressure dependence of a/c ratio plot obtained also showed a minimum at ~5 GPa consistent with our high-pressure Raman and resistivity results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural properties of Sb2S3 under pressure: evidence of an electronic topological transition

High-pressure Raman spectroscopy and x-ray diffraction of Sb2S3 up to 53 GPa reveals two phase transitions at 5 GPa and 15 GPa. The first transition is evidenced by noticeable compressibility changes in distinct Raman-active modes, in the lattice parameter axial ratios, the unit cell volume, as well as in specific interatomic bond lengths and bond angles. By taking into account relevant results...

متن کامل

Electronic Topological Transition in Ag2Te at High-pressure

Recently, Ag2Te was experimentally confirmed to be a 3D topological insulator (TI) at ambient pressure. However, the high-pressure behaviors and properties of Ag2Te were rarely reported. Here, a pressure-induced electronic topological transition (ETT) is firstly found in Ag2Te at 1.8 GPa. Before ETT, the positive pressure coefficient of bulk band-gap, which is firstly found in TIs family, is fo...

متن کامل

Effect of strain-induced electronic topological transitions on the superconducting properties of La2−xSrxCuO4 thin films

We propose a Ginzburg-Landau phenomenological model for the dependence of the critical temperature on microscopic strain in tetragonal high-Tc cuprates. Such a model is in agreement with the experimental results for LSCO under epitaxial strain, as well as with the hydrostatic pressure dependence of Tc in most cuprates. In particular, a nonmonotonic dependence of Tc on hydrostatic pressure, as w...

متن کامل

توصیف توپولوژیکی گذار نیم‌فلزی بلور MnAs

Topological analysis of the electronic charge density is introduced as a new tool for studying the electronic properties of the materials. In this method, the eigen values of the Hessian matrix of the electronic charge density as an scalar field are used to estimate the strength of the atomic bonds. We employ this method to study the half-metallic phase transition of MnAs in zinc blende structu...

متن کامل

Ab initio simulation of first-order amorphous-to-amorphous phase transition of silicon

The pressure-induced phase transition in amorphous silicon ~a-Si! is studied using ab initio constantpressure molecular-dynamic simulations. Crystalline silicon ~c-Si! shows a phase transformation from diamond-to-simple hexagonal at 29.5 GPa, whereas a-Si presents an irreversible sharp transition to an amorphous metallic phase at 16.25 GPa. The transition pressure of a-Si is also calculated fro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of physics. Condensed matter : an Institute of Physics journal

دوره 28 1  شماره 

صفحات  -

تاریخ انتشار 2016