Synergistic Inhibition of Wnt Pathway by HIF-1α and Osteoblast-Specific Transcription Factor Osterix (Osx) in Osteoblasts

نویسندگان

  • Dafu Chen
  • Yang Li
  • Zhiyu Zhou
  • Yonggang Xing
  • Yu Zhong
  • Xuenong Zou
  • Wei Tian
  • Chi Zhang
چکیده

Osterix (Osx) is an osteoblast-specific transcription factor required for osteoblast differentiation. Inhibition of Wnt pathway by Osx highlights the potential for feedback control mechanisms involved in bone formation. Hypoxia-inducible factor-1α (HIF-1α) is a master regulator of hypoxia. HIF-1α has been reported to couple angiogenesis to osteogenesis. Our recent study has demonstrated that Osx and HIF-1α cooperatively regulate VEGF expression in osteoblasts. Effects of hypoxia/HIF-1α on osteoblast proliferation and related mechanisms are not well understood. In this study, osteoblast growth under hypoxia was examined. We observed that osteoblast growth was inhibited under hypoxia. To explore possible mechanisms for hypoxia/HIF-1α to inhibit osteoblast proliferation, we tested the effect of hypoxia/HIF-1α on Wnt pathway. Quantitative RT-PCR results revealed that Wnt target genes such as cyclin D1 and c-Myc were downregulated under hypoxia while HIF-1α was upregulated. Treatment of desferrioxamine, a HIF-1α activator, led to further downregulation of expressions of cyclin D1 and c-Myc in osteoblasts. On the contrary, the inhibition of HIF-1α by siRNA in osteoblasts led to the expression increase of cyclin D1 and c-Myc. These data suggest that HIF-1α inhibits Wnt pathway in osteoblasts. To examine the effect of HIF-1α on Wnt pathway, HIF-1α was cotransfected with β-catenin along with Topflash reporter in transient transfection assay. Our results showed that HIF-1α inhibited β-catenin-induced Topflash reporter activity. Interestingly, a synergistic interplay was observed between Osx and HIF-1α in the inhibition of β-catenin-induced Topflash expression. Our findings indicate that Osx and HIF-1α cooperatively inhibit Wnt pathway. This study revealed additional new information of the cooperation between HIF-1α and Osx in osteoblasts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibition of Wnt signaling by the osteoblast-specific transcription factor Osterix.

The recent identification of the genes responsible for several human genetic diseases affecting bone homeostasis and the characterization of mouse models for these diseases indicated that canonical Wnt signaling plays a critical role in the control of bone mass. Here, we report that the osteoblast-specific transcription factor Osterix (Osx), which is required for osteoblast differentiation, inh...

متن کامل

HIF-1α Inhibits Wnt Signaling Pathway by Activating Sost Expression in Osteoblasts

The nature of the cellular and molecular mechanisms for the transition of avascular cartilage replacement with bone during endochondral ossification remains poorly understood. One of the driving forces is hypoxia. As a master regulator of hypoxia, hypoxia-inducible factor-1α (HIF-1α) has been reported to couple angiogenesis to osteogenesis. Our recent study has demonstrated that osteoblast grow...

متن کامل

Regulation of Bone Metabolism

Bone is formed through the processes of endochondral and intramembranous ossification. In endochondral ossification primary mesenchymal cells differentiate to chondrocytes and then are progressively substituted by bone, while in intramembranous ossification mesenchymal stem cells (MSCs) differentiate directly into osteoblasts to form bone. The steps of osteogenic proliferation, differentiation,...

متن کامل

The IRE1α-XBP1 pathway is essential for osteoblast differentiation through promoting transcription of Osterix.

During skeletal development, osteoblasts produce large amounts of extracellular matrix proteins and must therefore increase their secretory machinery to handle the deposition. The accumulation of unfolded protein in the endoplasmic reticulum induces an adoptive mechanism called the unfolded protein response (UPR). We show that one of the most crucial UPR mediators, inositol-requiring protein 1α...

متن کامل

Triiodothyronine potentiates angiogenesis-related factor expression through PI3K/AKT signaling pathway in human osteoarthritic osteoblasts

Objective(s): Previous study has indicated that triiodothyronine (T3) facilitated cartilage degeneration in osteoarthritis (OA). This study aimed to investigate the effects of T3 on angiogenesis-related factor expression in human osteoblasts of OA subchondral bone.Materials and Methods: The subchondral bone specimens were obtained from O...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012