Role of type III secretion in Edwardsiella tarda virulence.
نویسندگان
چکیده
Edwardsiella tarda is a Gram-negative enteric bacterium affecting both animals and humans. Recently, a type III secretion system (TTSS) was found in Ed. tarda. Such systems are generally used by bacterial pathogens to deliver virulence factors into host cells to subvert normal cell functions. Genome-walking was performed from the eseB and esrB genes (homologues of Salmonella sseB and ssrB, respectively) identified in previous studies, to determine the sequences of the TTSS. Thirty-five ORFs were identified which encode the TTSS apparatus, chaperones, effectors and regulators. Mutants affected in genes representing each category were generated and found to have decreased survival and growth in fish phagocytes. LD(50) values of the mutants were increased by at least 10-fold in comparison to those of the wild-type strain. The adherence and invasion rates of the esrA and esrB mutants were enhanced while those of the other mutants remained similar to the wild-type. The eseC and eseD mutants showed slight autoaggregation in Dulbecco's Modified Eagle Medium, whereas the rest of the mutants failed to autoaggregate. Regulation of the TTSS was found to involve the two-component regulatory system esrA-esrB. This study showed that the TTSS is important for Ed. tarda pathogenesis. An understanding of this system will provide greater insight into the virulence mechanisms of this bacterial pathogen.
منابع مشابه
FliC, a Flagellin Protein, Is Essential for the Growth and Virulence of Fish Pathogen Edwardsiella tarda
Edwardsiella tarda is a flagellated gram-negative bacterium which causes edwardsiellosis in fish. FliC, as a flagellar filament structural protein, is hypothesized to be involved in the pathogenesis of infection. In this study, a fliC in-frame deletion mutant of a virulent isolate of E. tarda was constructed through double crossover allelic exchange by means of the suicide vector pRE112, and it...
متن کاملIntramacrophage Infection Reinforces the Virulence of Edwardsiella tarda.
UNLABELLED Edwardsiella tarda is an important pathogenic bacterium that can replicate in macrophages. However, how the intramacrophage infection process affects the virulence of this bacterium is essentially unknown. Here, we show that E. tarda replicates and induces a caspase-1-dependent cell pyroptosis in a murine macrophage model. Via pyroptosis, intracellular E. tarda escapes to the extrace...
متن کاملTwo-component PhoB-PhoR regulatory system and ferric uptake regulator sense phosphate and iron to control virulence genes in type III and VI secretion systems of Edwardsiella tarda.
Inorganic phosphate (P(i)) and iron are essential nutrients that are depleted by vertebrates as a protective mechanism against bacterial infection. This depletion, however, is sensed by some pathogens as a signal to turn on the expression of virulence genes. Here, we show that the PhoB-PhoR two-component system senses changes in P(i) concentration, whereas the ferric uptake regulator (Fur) sens...
متن کاملCharacterization of proteins secreted from a type III secretion system of Edwardsiella tarda and their roles in macrophage infection.
The Type III secretion system is essential for intracellular replication of Edwardsiella tarda in phagocytes of fish and mammals. We identified the secreted proteins of the Type III secretion system by comparing the wild-type strain and the Type III mutant mET1229. The wild-type strain secreted 55, 25, and 22 kDa proteins into the culture supernatant, whereas the Type III mutant did not. These ...
متن کاملRegulation of autoinducer 2 production and luxS expression in a pathogenic Edwardsiella tarda strain.
Edwardsiella tarda is a bacterial pathogen that can infect both humans and animals. TX1, an Ed. tarda strain isolated from diseased fish, was found to produce autoinducer 2 (AI-2)-like activity that was growth phase dependent and modulated by growth conditions. The gene coding for the AI-2 synthase was cloned from TX1 and designated luxS(Et)(.) LuxS(Et) was able to complement the AI-2 mutant ph...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Microbiology
دوره 151 Pt 7 شماره
صفحات -
تاریخ انتشار 2005