Lithium ion solvation and diffusion in bulk organic electrolytes from first-principles and classical reactive molecular dynamics.
نویسندگان
چکیده
Lithium-ion battery performance is strongly influenced by the ionic conductivity of the electrolyte, which depends on the speed at which Li ions migrate across the cell and relates to their solvation structure. The choice of solvent can greatly impact both the solvation and diffusivity of Li ions. In this work, we used first-principles molecular dynamics to examine the solvation and diffusion of Li ions in the bulk organic solvents ethylene carbonate (EC), ethyl methyl carbonate (EMC), and a mixture of EC and EMC. We found that Li ions are solvated by either carbonyl or ether oxygen atoms of the solvents and sometimes by the PF6(-) anion. Li(+) prefers a tetrahedrally coordinated first solvation shell regardless of which species are involved, with the specific preferred solvation structure dependent on the organic solvent. In addition, we calculated Li diffusion coefficients in each electrolyte, finding slightly larger diffusivities in the linear carbonate EMC compared to the cyclic carbonate EC. The magnitude of the diffusion coefficient correlates with the strength of Li(+) solvation. Corresponding analysis for the PF6(-) anion shows greater diffusivity associated with a weakly bound, poorly defined first solvation shell. These results can be used to aid in the design of new electrolytes to improve Li-ion battery performance.
منابع مشابه
A salient effect of density on the dynamics of nonaqueous electrolytes
The mobility and solvation of lithium ions in electrolytes are crucial for the performance and safety of lithium ion batteries. It has been known that a single type of solvent cannot satisfy the requirements of both mobility and solvation simultaneously for electrolytes. Therefore, complex solvent mixtures have been used to optimize both properties. Here we present the effects of density on the...
متن کاملStructure and dynamics of electrical double layers in organic electrolytes.
The organic electrolyte of tetraethylammonium tetrafluoroborate (TEABF(4)) in the aprotic solvent of acetonitrile (ACN) is widely used in electrochemical systems such as electrochemical capacitors. In this paper, we examine the solvation of TEA(+) and BF(4)(-) in ACN, and the structure, capacitance, and dynamics of the electrical double layers (EDLs) in the TEABF(4-)ACN electrolyte using molecu...
متن کاملExperimental and Computational Approaches to Interfacial Resistance in Solid-State Batteries
Solid-state batteries with inorganic solid electrolytes are expected to be an efficient solution to the issues of current lithium-ion batteries that are originated from their organic-solvent electrolytes. Although solid-state batteries had been suffering from low rate capability due to low ionic conductivities of solid electrolytes, some sulfide solid electrolytes exhibiting high ionic conducti...
متن کاملLiquid Structure with Nano-Heterogeneity Promotes Cationic Transport in Concentrated Electrolytes.
Using molecular dynamics simulations, small-angle neutron scattering, and a variety of spectroscopic techniques, we evaluated the ion solvation and transport behaviors in aqueous electrolytes containing bis(trifluoromethanesulfonyl)imide. We discovered that, at high salt concentrations (from 10 to 21 mol/kg), a disproportion of cation solvation occurs, leading to a liquid structure of heterogen...
متن کاملSolvation shell dynamics of Na+ and Cl- ion pairs in selected water-DMSO mixtures
We have investigated the solvation shell dynamics of Na and Cl ion pairs in water DMSO mixtures of three compositions with xDMSO (mole fraction of DMSO) = 0.21, 0.35 and 0.48. Dynamical ion pair trajectories in these compositions are studied to analyze the diffusional behaviour of the solvent molecules in the primary and secondary solvation shells as well as the bulk solvent. As expected, the d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of physical chemistry. B
دوره 119 4 شماره
صفحات -
تاریخ انتشار 2015