Comparison of variant-specific hybridization and single-strand conformational polymorphism methods for detection of mixed human papillomavirus type 16 variant infections.
نویسندگان
چکیده
PCR-based variant-specific hybridization (VSH) and single-strand conformational polymorphism (SSCP) analyses were compared for their capacities to detect mixed human papillomavirus type 16 (HPV-16) variant infections within clinical specimens. The SSCP assay used in this comparison targets a 682-bp fragment that spans nucleotides 7445 to 222 within the HPV-16 genome. This fragment includes portions of the HPV-16 long control region and the E6 open reading frame and identifies three categories of SSCP patterns: those identical to the patterns of prototype HPV-16 (P), those identical to the patterns of Caski-derived HPV-16 (C), or those that are different from the P and C HPV-16 patterns and that are therefore classified as belonging to novel (N) HPV-16 variants. VSH targets the entire HPV-16 E6-coding region (nucleotides 56 to 640) and distinguishes previously described variant nucleotides at positions 109, 131, 132, 143, 145, 178, 286, 289, 350, 403, and 532. Clinical samples used in VSH and SSCP analyses were subjected to multiple independent amplification reactions. The resultant amplicons were cloned, and 14 to 78 clones per clinical specimen were evaluated by VSH. VSH detected an HPV-16 variant that represented at least 20% of the amplified HPV-16 variant population. In contrast, SSCP analysis detected HPV-16 variants that represented 36% of the amplified HPV-16 population. Comparison studies were conducted with mixed HPV-16 variant laboratory constructs. Again, VSH had a higher sensitivity than SSCP analysis in detecting mixed HPV-16 variant infections in these constructed amplicon targets. Accurate detection of HPV-16 variants may enhance our understanding of the natural history of HPV-16 infections.
منابع مشابه
P-215: Discovery of A Novel APA Variant of A Human Potential Gene Based on Expressed Sequenced Tags Analysis
Background: Expressed sequence tags (ESTs) are sequences of cDNA fragments prepared from different tissue sources. There are over one million of these sequences in the publicly available database, and these sequences are believed to represent more than half of all human genes. The ESTs belong to different cDNA libraries, was prepared from one particular cell type, organ, or tumor. Therefore, th...
متن کاملEvaluation of a Genetic Test for Diagnose of Primary Hypolactasia in Northeast of Iran (Khorasan)
Objective(s) Primary or adult type hypolactasia, the most common enzyme deficiency in the world, is due to reduced lactase activity in the intestinal cell after weaning. Lactase non-persistence is inherited as an autosomal recessive trait. A DNA variant, single nucleotide polymorphism C/T−13910 which is located on 13910 base pairs (bp) upstream of the lactase gene (LCT) at chromosome 2 has been...
متن کاملSingle Nucleotide Polymorphisms and Association Studies: A Few Critical Points
Uncovering DNA sequence variations that correlate with phenotypic changes, e.g., diseases, is the aim of sequence variation studies. Common types sequence variations are Single nucleotide polymorphism (SNP, pronounced snip).SNPs are the third-generation molecular marker. SNP represents a DNA sequence variant of a single base pair with the minor allele occurring in more than 1% of a given popula...
متن کاملRelevant Allelic Frequency of Gene Polymorphism and Genetic Predisposition of Human Papillomavirus in Patients with Cervical Cancer
Backround: The present study investigated the correlation between p53 gene codon 72 polymorphism and 6 other genetic single nucleotide polymorphisms (SNPs) in patients with cervical cancer infected by HPV. Methods: 450 patients with cervical cancer (280 Squamous cell carcinoma and 170 Adenocarcinoma) were followed at hospitals in Iran from Dec. 2014 to Apr. 2015. Moreover, 100 age/sex-matche...
متن کاملWhole-Genome Sequencing and Variant Analysis of Human Papillomavirus 16 Infections
Human papillomavirus (HPV) is a strongly conserved DNA virus, high-risk types of which can cause cervical cancer in persistent infections. The most common type found in HPV-attributable cancer is HPV16, which can be subdivided into four lineages (A to D) with different carcinogenic properties. Studies have shown HPV16 sequence diversity in different geographical areas, but only limited informat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of clinical microbiology
دوره 37 11 شماره
صفحات -
تاریخ انتشار 1999