Eplerenone-Resistant Salt-Sensitive Hypertension in Nedd4-2 C2 KO Mice

نویسندگان

  • Tabito Kino
  • Tomoaki Ishigami
  • Tsumugi Murata
  • Hiroshi Doi
  • Rie Nakashima-Sasaki
  • Lin Chen
  • Michiko Sugiyama
  • Kengo Azushima
  • Hiromichi Wakui
  • Shintaro Minegishi
  • Kouichi Tamura
چکیده

The epithelial sodium channel (ENaC) plays critical roles in maintaining fluid and electrolyte homeostasis and is located in the aldosterone-sensitive distal nephron (ASDN). We previously found that Nedd4-2 C2 knockout (KO) mice showed salt-sensitive hypertension with paradoxically enhanced ENaC gene expression in ASDN under high oral salt intake. Eplerenone (EPL), a selective aldosterone blocker, is a promising therapeutic option for resistant or/and salt-sensitive hypertension. We examined the effect of EPL on Nedd4-2 C2 KO mice with respect to blood pressure, metabolic parameters, and molecular level changes in ASDN under high oral salt intake. We found that EPL failed to reduce blood pressure in KO mice with high oral salt intake and upregulated ENaC expression in ASDN. Thus, salt-sensitive hypertension in Nedd4-2 C2 KO was EPL-resistant. Gene expression analyses of laser-captured specimens in ASDN suggested the presence of non-aldosterone-dependent activation of ENaC transcription in ASDN of Nedd4-2 C2 KO mice, which was abolished by amiloride treatment. Our results from Nedd4-2 C2 KO mice suggest that enhanced ENaC gene expression is critically involved in salt-sensitive hypertension under certain conditions of specific enzyme isoforms for their ubiquitination.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An isoform of Nedd4-2 is critically involved in the renal adaptation to high salt intake in mice

Epithelial sodium channels (ENaCs) play critical roles in the maintenance of fluid and electrolyte homeostasis, and their genetic abnormalities cause one type of hereditary salt-sensitive hypertension, Liddle syndrome. As we reported previously, both human and rodent Nedd4L/Nedd4-2 showed molecular diversity, with and without a C2 domain in their N-terminal. Nedd4L/Nedd4-2 isoforms with a C2 do...

متن کامل

Renal tubular NEDD4-2 deficiency causes NCC-mediated salt-dependent hypertension.

The E3 ubiquitin ligase NEDD4-2 (encoded by the Nedd4L gene) regulates the amiloride-sensitive epithelial Na+ channel (ENaC/SCNN1) to mediate Na+ homeostasis. Mutations in the human β/γENaC subunits that block NEDD4-2 binding or constitutive ablation of exons 6-8 of Nedd4L in mice both result in salt-sensitive hypertension and elevated ENaC activity (Liddle syndrome). To determine the role of r...

متن کامل

An Isoform of Nedd4-2 Plays a Pivotal Role in Electrophysiological Cardiac Abnormalities

We have previously shown that neural precursor cell-expressed developmentally downregulated gene 4-2 (Nedd4-2) isoforms with a C2 domain are closely related to ubiquitination of epithelial sodium channel (ENaC), resulting in salt-sensitive hypertension by Nedd4-2 C2 targeting in mice. The sodium voltage-gated channel alpha subunit 5 (SCN5A) gene encodes the α subunit of the human cardiac voltag...

متن کامل

Enhanced expression of epithelial sodium channels causes salt-induced hypertension in mice through inhibition of the α2-isoform of Na+, K+-ATPase

Knockout of the Nedd4-2 gene in mice results in overexpression of epithelial sodium channels (ENaC) on the plasma membrane in the kidney, choroid plexus and brain nuclei. These mice exhibit enhanced pressor responses to CSF [Na(+)] as well as dietary salt-induced hypertension which both can be blocked by central infusion of the ENaC blocker benzamil. Functional studies suggest that ENaC activat...

متن کامل

Salt-induced hypertension in a mouse model of Liddle syndrome is mediated by epithelial sodium channels in the brain.

Neural precursor cell expressed and developmentally downregulated 4-2 protein (Nedd4-2) facilitates the endocytosis of epithelial Na channels (ENaCs). Both mice and humans with a loss of regulation of ENaC by Nedd4-2 have salt-induced hypertension. ENaC is also expressed in the brain, where it is critical for hypertension on a high-salt diet in salt-sensitive rats. In the present studies we ass...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2017