Diet effects on urine composition of cattle and N2O emissions.

نویسندگان

  • J Dijkstra
  • O Oenema
  • J W van Groenigen
  • J W Spek
  • A M van Vuuren
  • A Bannink
چکیده

Ruminant production contributes to emissions of nitrogen (N) to the environment, principally ammonia (NH3), nitrous oxide (N2O) and di-nitrogen (N2) to air, nitrate (NO3 -) to groundwater and particulate N to surface waters. Variation in dietary N intake will particularly affect excretion of urinary N, which is much more vulnerable to losses than is faecal N. Our objective is to review dietary effects on the level and form of N excreted in cattle urine, as well as its consequences for emissions of N2O. The quantity of N excreted in urine varies widely. Urinary N excretion, in particular that of urea N, is decreased upon reduction of dietary N intake or an increase in the supply of energy to the rumen microorganisms and to the host animal itself. Most of the N in urine (from 50% to well over 90%) is present in the form of urea. Other nitrogenous components include purine derivatives (PD), hippuric acid, creatine and creatinine. Excretion of PD is related to rumen microbial protein synthesis, and that of hippuric acid to dietary concentration of degradable phenolic acids. The N concentration of cattle urine ranges from 3 to 20 g/l. High-dietary mineral levels increase urine volume and lead to reduced urinary N concentration as well as reduced urea concentration in plasma and milk. In lactating dairy cattle, variation in urine volume affects the relationship between milk urea and urinary N excretion, which hampers the use of milk urea as an accurate indicator of urinary N excretion. Following its deposition in pastures or in animal houses, ubiquitous microorganisms in soil and waters transform urinary N components into ammonium (NH4 +), and thereafter into NO3 - and ultimately in N2 accompanied with the release of N2O. Urinary hippuric acid, creatine and creatinine decompose more slowly than urea. Hippuric acid may act as a natural inhibitor of N2O emissions, but inhibition conditions have not been defined properly yet. Environmental and soil conditions at the site of urine deposition or manure application strongly influence N2O release. Major dietary strategies to mitigating N2O emission from cattle operations include reducing dietary N content or increasing energy content, and increasing dietary mineral content to increase urine volume. For further reduction of N2O emission, an integrated animal nutrition and excreta management approach is required.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Changes in Denitrification Rate, Bacterial Denitrifier Community Structure and Abundance in Dairy-grazed Pasture Soils Treated with Cattle Urine and Dcd

Urine excreted by cattle can produce very high concentrations of available N in relatively small volumes of soil and lead to high nitrous oxide (N2O) emissions. Application of the nitrification inhibitor dicyandiamide (DCD) can inhibit nitrification. DCD application results in lower nitrate (NO3 ) concentrations and N2O emissions from denitrification in urine affected soils. However, the effect...

متن کامل

The effect of feeding high fat diet to beef cattle on manure composition and gaseous emission from a feedlot pen surface

BACKGROUND Dietary manipulation is a common practice to mitigate gaseous emission from livestock production facilities, and the variation of fat level in the diet has shown great influence on ruminal volatile fatty acids (VFA) and enteric methane generation. The changes in dietary fat levels influence rumen chemistry that could modify manure nutrient composition along with odor and gaseous emis...

متن کامل

Biochar incorporation into pasture soil suppresses in situ nitrous oxide emissions from ruminant urine patches.

Nitrous oxide (N2O) emissions from grazing animal excreta are estimated to be responsible for 1.5 Tg of the total 6.7 Tg of anthropogenic N2O emissions. This study was conducted to determine the in situ effect of incorporating biochar, into soil, on N2O emissions from bovine urine patches and associated pasture uptake of N. The effects of biochar rate (0-30 t ha(-1)), following soil incorporati...

متن کامل

Investigation of Differences in Biochemical and Mineral Composition of Urine between Pregnant and Non-Pregnant Crossbred Dairy Cattle

Dairy farmers have been longing for simple and economical methods of early pregnancy diagnosis. Urine based biochemical and mineral assays could be one of those methods, owing to the ease of sample collection and relatively simple and economical assays involved. However, basic information on changes in urinary composition during early pregnancy in cattle is lacking. This study was designed to e...

متن کامل

Reducing crude protein in beef cattle diet reduces ammonia emissions from artificial feedyard surfaces.

Concentrated animal feeding operations are major sources of ammonia to the atmosphere. Control methods to reduce emissions include acidifying amendments, urease inhibitors, and absorbents. For beef cattle, decreasing crude protein (CP) in diets may be the most practical and cost-effective method to reduce ammonia emissions. Our objective was to quantify the effect of reducing CP in beef cattle ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Animal : an international journal of animal bioscience

دوره 7 Suppl 2  شماره 

صفحات  -

تاریخ انتشار 2013