An Alternative Curvature Measure for Topographic Feature Detection
نویسندگان
چکیده
The notion of topographic features like ridges, trenches, hills, etc. is formed by visualising the 2D image function as a surface in 3D space. Hence, properties of such a surface can be used to detect features from images. One such property, the curvature of the image surface, can be used to detect features characterised by a sharp bend in the surface. Curvature based feature detection requires an efficient technique to estimate/calculate the surface curvature. In this paper, we present an alternative measure for curvature and provide an analysis of the same to determine its scope. Feature detection algorithms using this measure are formulated and two applications are chosen to demonstrate their performance. The results show good potential of the proposed measure in terms of efficiency and scope.
منابع مشابه
Historic Low Wall Detection via Topographic Parameter Images Derived from Fine-Resolution DEM
Coral walls protect vegetation gardens from strong winds that sweep across Xiji Island, Taiwan Strait for half the year. Topographic parameters based on light detection and ranging (LiDAR)-based high-resolution digital elevation model (DEM) provide obvious correspondence with the expected form of landscape features. The information on slope, curvature, and openness can help identify the locatio...
متن کاملLandforms identification using neural network-self organizing map and SRTM data
During an 11 days mission in February 2000 the Shuttle Radar Topography Mission (SRTM) collected data over 80% of the Earth's land surface, for all areas between 60 degrees N and 56 degrees S latitude. Since SRTM data became available, many studies utilized them for application in topography and morphometric landscape analysis. Exploiting SRTM data for recognition and extraction of topographic ...
متن کاملAutomatic geomorphic feature extraction from lidar in flat and engineered landscapes
[1] High-resolution topographic data derived from light detection and ranging (lidar) technology enables detailed geomorphic observations to be made on spatially extensive areas in a way that was previously not possible. Availability of this data provides new opportunities to study the spatial organization of landscapes and channel network features, increase the accuracy of environmental transp...
متن کاملEnsemble Classification and Extended Feature Selection for Credit Card Fraud Detection
Due to the rise of technology, the possibility of fraud in different areas such as banking has been increased. Credit card fraud is a crucial problem in banking and its danger is over increasing. This paper proposes an advanced data mining method, considering both feature selection and decision cost for accuracy enhancement of credit card fraud detection. After selecting the best and most effec...
متن کاملUse of plan curvature variations for the identification of ridges and channels on DEM
This paper proposes novel improvements in the traditional algorithms for the identification of ridge and channel (also called ravines) topographic features on raster digital elevation models (DEMs). The overall methodology consists of two main steps: (1) smoothing the DEM by applying a mean filter, and (2) detection of ridge and channel features as cells with positive and negative plan curvatur...
متن کامل