Effects of macroporous resin size on Candida antarctica lipase B adsorption, fraction of active molecules, and catalytic activity for polyester synthesis.
نویسندگان
چکیده
Methyl methacrylate resins with identical average pore diameter (250 A) and surface area (500 m2/g) but with varied particle size (35 to 560-710 microm) were employed to study how immobilization resin particle size influences Candida antarctica Lipase B (CALB) loading, fraction of active sites, and catalytic properties for polyester synthesis. CALB adsorbed more rapidly on smaller beads. Saturation occurred in less than 30 s and 48 h for beads with diameters 35 and 560-710 microm, respectively. Linearization of adsorption isotherm data by the Scatchard analysis showed for the 35 microm resin that: (i) CALB loading at saturation was well below that required to form a monolayer and fully cover the support surface and (ii) CALB has a high affinity for this resin surface. Infrared microspectroscopy showed that CALB forms protein loading fronts for resins with particle sizes 560-710 and 120 microm. In contrast, CALB appears evenly distributed throughout 35 microm resins. By titration with p-nitrophenyl n-hexyl phosphate (MNPHP), the fraction of active CALB molecules adsorbed onto resins was <50% which was not influenced by particle size. The fraction of active CALB molecules on the 35 microm support increased from 30 to 43% as enzyme loading was increased from 0.9 to 5.7% (w/w) leading to increased activity for epsilon-caprolactone (epsilon-CL) ring-opening polymerization. At about 5% w/w CALB loading, by decreasing the immobilization support diameter from 560-710 to 120, 75, and 35 microm, conversion of epsilon-CL % to polyester increased (20 to 36, 42, and 61%, respectively, at 80 min). Similar trends were observed for condensation polymerizations between 1,8-octanediol and adipic acid.
منابع مشابه
Effects of porous polystyrene resin parameters on Candida antarctica lipase B adsorption, distribution, and polyester synthesis activity.
Polystyrene resins with varied particle sizes (35 to 350-600 microm) and pore diameters (300-1000 A) were employed to study the effects of immobilization resin particle size and pore diameter on Candida antarctica Lipase B (CALB) loading, distribution within resins, fraction of active sites, and catalytic properties for polyester synthesis. CALB adsorbed rapidly (saturation time </= 4 min) for ...
متن کاملIntermediate Production of Mono- and Diolein by an Immobilized Lipase from Candida antarctica
Lipase from Candida antarctica, fixed on macroporous acrylic resin, has been used for the intermediate production of mono- and diolein by hydrolysis of triolein. The effect of altering concentrations of triolein and glycerol and the function of the molecular sieve on the hydrolysis reaction of triolein were investigated. The highest hydrolysis yield was observed for the utmost concentration of ...
متن کاملNanoclays for Lipase Immobilization: Biocatalyst Characterization and Activity in Polyester Synthesis
The immobilization of Candida antarctica lipase B (CALB) was performed by physical adsorption on both neat and organo-modified forms of sepiolite and montmorillonite. The influence of different parameters, e.g., solvent, enzyme loading, cross-linking, and type of clay support, on immobilization efficiency and catalyst hydrolytic activity has been investigated. The highest hydrolytic activities ...
متن کاملCandida antarctica lipase B chemically immobilized on epoxy-activated micro- and nanobeads: catalysts for polyester synthesis.
Candida antarctica Lipase B (CALB) was covalently immobilized onto epoxy-activated macroporous poly(methyl methacrylate) Amberzyme beads (235 microm particle size, 220 A pore size) and nanoparticles (nanoPSG, diameter 68 nm) with a poly(glycidyl methacrylate) outer region. Amberzyme beads allowed CALB loading up to 0.16 g of enzyme per gram of support. IR microspectroscopy generated images of A...
متن کاملSol-gel entrapped Candida antarctica lipase B--a biocatalyst with excellent stability for kinetic resolution of secondary alcohols.
Sol-gel entrapment is an efficient immobilization technique that allows preparation of robust and highly stable biocatalysts. Lipase from Candida antarctica B was immobilized by sol-gel entrapment and by sol-gel entrapment combined with adsorption on Celite 545, using a ternary silane precursor system. After optimization of the immobilization protocol, the best enzyme loading was 17.4 mg/g supp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Langmuir : the ACS journal of surfaces and colloids
دوره 23 3 شماره
صفحات -
تاریخ انتشار 2007