Differential effects of myeloperoxidase-derived oxidants on Escherichia coli DNA replication.
نویسندگان
چکیده
The microbicidal myeloperoxidase (MPO)-H2O2-chloride system strongly inhibits Escherichia coli DNA synthesis. Also, cell envelopes from MPO-treated E. coli cells lose their ability to interact with hemimethylated DNA sequences of oriC, the chromosomal origin of replication, raising the prospect that suppression of DNA synthesis involves impairment of oriC-related functions (H. Rosen, et al. Proc. Natl. Acad. Sci. USA, 87:10048-10052, 1990). To evaluate whether origin-specific DNA sequences play a role in the MPO effect on E. coli DNA synthesis, plasmid DNA replication was compared to total (chromosomal) DNA replication for six plasmids with three distinct origins of replication. Plasmid pCM700 replication, replicating from oriC, was as sensitive to MPO-mediated inhibition as was total (chromosomal) DNA replication. A regression line describing this relationship had a slope of 0.90, and the r2 was 0.89. In contrast, the replication activities of three of four non-oriC plasmids, pUC19, pACYC184, and pSC101, demonstrated significant early resistance to inhibition by MPO-derived oxidants. The exception to this resistance pattern was plasmid pSP102, which has an origin derived from P1 phage. pSP102 replication declined similarly to that of total DNA synthesis. The regression line for pSP102 replication versus total DNA synthesis had a slope of 0.95, and the r2 was 0.92. The biochemical requirements for P1-mediated replication are strikingly similar to those for oriC-mediated replication. It is proposed that one of these requirements, common to oriC and the P1 origin but not critical to the replication of the other non-oriC plasmids, is an important target for MPO-mediated oxidations that mediate the initial decline in E. coli chromosomal DNA synthesis.
منابع مشابه
Loss of DNA-membrane interactions and cessation of DNA synthesis in myeloperoxidase-treated Escherichia coli.
Neutrophils and monocytes employ a diverse array of antimicrobial effector systems to support their host defense functions. The mechanisms of action of most of these systems are incompletely understood. The present report indicates that microbicidal activity by a neutrophil-derived antimicrobial system, consisting of myeloperoxidase, enzymatically generated hydrogen peroxide, and chloride ion, ...
متن کاملRedundant contribution of myeloperoxidase-dependent systems to neutrophil-mediated killing of Escherichia coli.
Neutrophil microbicidal activity is a consequence of overlapping antimicrobial systems that vary in prominence according to the conditions of the neutrophil-microbe interaction, the nature of the microbe, and its metabolic state. In this study, normal, myeloperoxidase-deficient, and respiratory burst-deficient (chronic granulomatous disease [CGD]) neutrophils killed Escherichia coli with equiva...
متن کاملUnequal fidelity of leading strand and lagging strand DNA replication on the Escherichia coli chromosome.
We have investigated the question whether during chromosomal DNA replication in Escherichia coli the two DNA strands may be replicated with differential accuracy. This possibility of differential replication fidelity arises from the distinct modes of replication in the two strands, one strand (the leading strand) being synthesized continuously, the other (the lagging strand) discontinuously in ...
متن کاملHighly efficient yeast-based in vivo DNA cloning of multiple DNA fragments and the simultaneous construction of yeast/ Escherichia coli shuttle vectors.
In vivo recombinational cloning in yeast is a very efficient method. Until now, this method has been limited to experiments with yeast vectors because most animal, insect, and bacterial vectors lack yeast replication origins. We developed a new system to apply yeast-based in vivo cloning to vectors lacking yeast replication origins. Many cloning vectors are derived from the plasmid pBR322 and h...
متن کاملDifferent effects of ppGpp on Escherichia coli DNA replication in vivo and in vitro☆
Inhibition of Escherichia coli DNA replication by guanosine tetraphosphate (ppGpp) is demonstrated in vitro. This finding is compatible with impairment of the DnaG primase activity by this nucleotide. However, in agreement to previous reports, we were not able to detect a rapid inhibition of DNA synthesis in E. coli cells under the stringent control conditions, when intracellular ppGpp levels i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Infection and immunity
دوره 66 6 شماره
صفحات -
تاریخ انتشار 1998