Quadratically convergent algorithm for orbital optimization in the orbital-optimized coupled-cluster doubles method and in orbital-optimized second-order Møller-Plesset perturbation theory.
نویسندگان
چکیده
Using a Lagrangian-based approach, we present a more elegant derivation of the equations necessary for the variational optimization of the molecular orbitals (MOs) for the coupled-cluster doubles (CCD) method and second-order Møller-Plesset perturbation theory (MP2). These orbital-optimized theories are referred to as OO-CCD and OO-MP2 (or simply "OD" and "OMP2" for short), respectively. We also present an improved algorithm for orbital optimization in these methods. Explicit equations for response density matrices, the MO gradient, and the MO Hessian are reported both in spin-orbital and closed-shell spin-adapted forms. The Newton-Raphson algorithm is used for the optimization procedure using the MO gradient and Hessian. Further, orbital stability analyses are also carried out at correlated levels. The OD and OMP2 approaches are compared with the standard MP2, CCD, CCSD, and CCSD(T) methods. All these methods are applied to H(2)O, three diatomics, and the O(4)(+) molecule. Results demonstrate that the CCSD and OD methods give nearly identical results for H(2)O and diatomics; however, in symmetry-breaking problems as exemplified by O(4)(+), the OD method provides better results for vibrational frequencies. The OD method has further advantages over CCSD: its analytic gradients are easier to compute since there is no need to solve the coupled-perturbed equations for the orbital response, the computation of one-electron properties are easier because there is no response contribution to the particle density matrices, the variational optimized orbitals can be readily extended to allow inactive orbitals, it avoids spurious second-order poles in its response function, and its transition dipole moments are gauge invariant. The OMP2 has these same advantages over canonical MP2, making it promising for excited state properties via linear response theory. The quadratically convergent orbital-optimization procedure converges quickly for OMP2, and provides molecular properties that are somewhat different than those of MP2 for most of the test cases considered (although they are similar for H(2)O). Bond lengths are somewhat longer, and vibrational frequencies somewhat smaller, for OMP2 compared to MP2. In the difficult case of O(4)(+), results for several vibrational frequencies are significantly improved in going from MP2 to OMP2.
منابع مشابه
Full configuration interaction potential energy curves for breaking bonds to hydrogen: An assessment of single-reference correlation methods
Several approximate correlation methods have been assessed for bond breaking reactions in BH, HF, and CH4 by comparison to the full configuration interaction limit. Second-order Møller–Plesset perturbation theory, coupled-cluster singles and doubles ~CCSD!, coupled-cluster with perturbative triples @CCSD~T!#, and the hybrid density-functional method Becke three parameter Lee–Yang– Parr have bee...
متن کاملA CCSD(T) study of the HeNO molecular complex
Related Articles The divide-expand-consolidate family of coupled cluster methods: Numerical illustrations using second order Møller-Plesset perturbation theory J. Chem. Phys. 136, 014105 (2012) Accurate ab initio quartic force fields of cyclic and bent HC2N isomers J. Chem. Phys. 135, 244310 (2011) Theoretical characterization of intermolecular vibrational states through the multi-configuration...
متن کاملAuxiliary Basis Sets for Density Fitting Mp2 Calculations: Correlation Consistent Basis Sets for the 5d Elements Hf-pt
Auxiliary basis sets specifically matched to the correlation consistent cc-pVnZ-PP, ccpwCVnZ-PP, aug-cc-pVnZ-PP and aug-cc-pwCVnZ-PP orbital basis sets (used in conjunction with pseudopotentials) for the 5d transition metal elements Hf-Pt have been optimized for use in density fitting second-order Møller-Plesset perturbation theory and other correlated ab initio methods. Calculations of the sec...
متن کاملRecent Development of Divide-and-conquer Linear Scaling Method
This paper addresses the recent development of a series of linear-scaling electronic structure calculation methods [1-9], which are based on the divide-and-conquer (DC) method by Yang et al. [11,12]. The DC method used to be applied mainly to pure density functional theory (DFT) or semi-empirical molecular orbital (MO) calculations. We have applied the DC method to the Hartree-Fock (HF) and hyb...
متن کاملExcited states theory for optimized orbitals and valence optimized orbitals coupled-cluster doubles models
We introduce an excited state theory for the optimized orbital coupled cluster doubles ~OO-CCD! and valence optimized orbital coupled cluster doubles ~VOO-CCD! models. The equations for transition energies are derived using a similarity transformed Hamiltonian. The effects of orbital relaxation are discussed. We present results for several single-reference molecules (H2O, CH2O, C2H4O, C2H4, BeO...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 135 10 شماره
صفحات -
تاریخ انتشار 2011