The Evolutionarily Conserved LIM Homeodomain Protein LIM-4/LHX6 Specifies the Terminal Identity of a Cholinergic and Peptidergic C. elegans Sensory/Inter/Motor Neuron-Type

نویسندگان

  • Jinmahn Kim
  • Jihye Yeon
  • Seong-Kyoon Choi
  • Yang Hoon Huh
  • Zi Fang
  • Seo Jin Park
  • Myoung Ok Kim
  • Zae Young Ryoo
  • Kyeongjin Kang
  • Hee-Seok Kweon
  • Won Bae Jeon
  • Chris Li
  • Kyuhyung Kim
  • Andrew D. Chisholm
چکیده

The expression of specific transcription factors determines the differentiated features of postmitotic neurons. However, the mechanism by which specific molecules determine neuronal cell fate and the extent to which the functions of transcription factors are conserved in evolution are not fully understood. In C. elegans, the cholinergic and peptidergic SMB sensory/inter/motor neurons innervate muscle quadrants in the head and control the amplitude of sinusoidal movement. Here we show that the LIM homeobox protein LIM-4 determines neuronal characteristics of the SMB neurons. In lim-4 mutant animals, expression of terminal differentiation genes, such as the cholinergic gene battery and the flp-12 neuropeptide gene, is completely abolished and thus the function of the SMB neurons is compromised. LIM-4 activity promotes SMB identity by directly regulating the expression of the SMB marker genes via a distinct cis-regulatory motif. Two human LIM-4 orthologs, LHX6 and LHX8, functionally substitute for LIM-4 in C. elegans. Furthermore, C. elegans LIM-4 or human LHX6 can induce cholinergic and peptidergic characteristics in the human neuronal cell lines. Our results indicate that the evolutionarily conserved LIM-4/LHX6 homeodomain proteins function in generation of precise neuronal subtypes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The LIM and POU homeobox genes ttx-3 and unc-86 act as terminal selectors in distinct cholinergic and serotonergic neuron types.

Transcription factors that drive neuron type-specific terminal differentiation programs in the developing nervous system are often expressed in several distinct neuronal cell types, but to what extent they have similar or distinct activities in individual neuronal cell types is generally not well explored. We investigate this problem using, as a starting point, the C. elegans LIM homeodomain tr...

متن کامل

Transcription factor LIM homeobox 7 (Lhx7) maintains subtype identity of cholinergic interneurons in the mammalian striatum.

The generation and maintenance of a plethora of neuronal subtypes is essential for normal brain function. Nevertheless, little is known about the molecular mechanisms that maintain the defining characteristics of neurons following their initial postmitotic specification. Using conditional gene ablation in mice, we demonstrate here that the homeodomain protein LIM homeobox (Lhx)7 is essential fo...

متن کامل

The C. elegans protein CEH-30 protects male-specific neurons from apoptosis independently of the Bcl-2 homolog CED-9.

The developmental control of apoptosis is fundamental and important. We report that the Caenorhabditis elegans Bar homeodomain transcription factor CEH-30 is required for the sexually dimorphic survival of the male-specific CEM (cephalic male) sensory neurons; the homologous cells of hermaphrodites undergo programmed cell death. We propose that the cell-type-specific anti-apoptotic gene ceh-30 ...

متن کامل

Regulation of Interneuron Function in the C. elegans Thermoregulatory Pathway by the ttx-3 LIM Homeobox Gene

Neural pathways, which couple temperature-sensing neurons to motor and autonomic outputs, allow animals to navigate away from and adjust metabolism rates in response to the temperature extremes often encountered. ttx-3 is required for the specification of the AIY interneuron in the C. elegans neural pathway that mediates thermoregulation. ttx-3 null mutant animals exhibit the same thermotactic ...

متن کامل

Concocting Cholinergy

The neuronal diversity in our brains is staggering. Understandably, uncovering the molecular rules that govern it is a very difficult pursuit. Its starting point should most certainly be a catalogue raisonné of this diversity, ordered perhaps according to the relatively few neurotransmitters employed in the nervous system. Historically, this has been achieved in descriptive studies; first using...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2015