Functional fitting Runge-Kutta-Nyström method with variable coefficients

نویسنده

  • Kazufumi OZAWA
چکیده

A new type of variable coefficient Runge-Kutta-Nyström methods is proposed for solving the initial value problems of the special form y(t) = f(t, y(t)). The method is based on the exact integration of some given functions in order to solve the problem exactly when the solution is the linear combination of these functions. If this is not the case, the algebraic order (order of accuracy) of the method is very important. The algebraic order of the method is investigated by using the power series expansions of the coefficients, which are functions of the stepsize and the parameters in the problem. It is shown that the method has the same algebraic order as those of the direct collocation Runge-Kutta-Nyström method by van der Houwen et al., when the collocation points are identical with that method. Experimental results which demonstrate the validity of the theoretical analysis are presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exponentially Fitted Symplectic Runge-Kutta-Nyström methods

In this work we consider symplectic Runge Kutta Nyström (SRKN) methods with three stages. We construct a fourth order SRKN with constant coefficients and a trigonometrically fitted SRKN method. We apply the new methods on the two-dimentional harmonic oscillator, the Stiefel-Bettis problem and on the computation of the eigenvalues of the Schrödinger equation.

متن کامل

Variable Step Runge-Kutta-Nyström Methods for the Numerical Solution of Reversible Systems

Fixed step, symmetric Runge-Kutta-Nyström formulae have proved to be very efficient for the numerical integration of a large class of reversible second order systems of ordinary differential equations of the special form d 2y dt2 = f(t, y). However for some important classes of problems it is necessary, for the sake of efficiency, to allow a variable steplength of integration to be used and in ...

متن کامل

Functional fitting Runge-Kutta method with variable coefficients

In this paper, we propose a functional fitting s-stage Runge-Kutta method which is based on the exact integration of the set of the linearly independent functions u i (t), (i = 1,. .. , s). The method is exact when the solution of the ODE can be expressed as the linear combination of u i (t), although the method has an error for general ODE. In this work we investigate the order of accuracy of ...

متن کامل

Symplectic Runge-Kutta-Nyström Methods with Phase-Lag Oder 8 and Infinity

In this work we consider Symplectic Runge Kutta Nyström methods with five stages. A new fourth algebraic order method with phase-lag order eight is presented. Also the symplectic Runge Kutta Nyström of Calvo and Sanz Serna with five stages and fourth order is modified to produce a phase-fitted method. We apply the new methods on several Hamiltonian systems and on the computation of the eigenval...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007