Ultra-sensitive Magnetic Microscopy with an Optically Pumped Magnetometer
نویسندگان
چکیده
Optically pumped magnetometers (OPMs) based on lasers and alkali-metal vapor cells are currently the most sensitive non-cryogenic magnetic field sensors. Many applications in neuroscience and other fields require high-resolution, high-sensitivity magnetic microscopic measurements. In order to meet this demand we combined a cm-size spin-exchange relaxation-free (SERF) OPM and flux guides (FGs) to realize an ultra-sensitive FG-OPM magnetic microscope. The FGs serve to transmit the target magnetic flux to the OPM thus improving both the resolution and sensitivity to small magnetic objects. We investigated the performance of the FG-OPM device using experimental and numerical methods, and demonstrated that an optimized device can achieve a unique combination of high resolution (80 μm) and high sensitivity (8.1 pT/). In addition, we also performed numerical calculations of the magnetic field distribution in the FGs to estimate the magnetic noise originating from the domain fluctuations in the material of the FGs. We anticipate many applications of the FG-OPM device such as the detection of micro-biological magnetic fields; the detection of magnetic nano-particles; and non-destructive testing. From our theoretical estimate, an FG-OPM could detect the magnetic field of a single neuron, which would be an important milestone in neuroscience.
منابع مشابه
High Sample Rate Optically Pumped Helium Magnetometer
Optically pumped helium magnetometers are important instruments whichhave many applications in military, mass spectroscopy and space applications. In thispaper, the working principles of helium magnetometers have been explained. There isalso an introduction of a new method for finding the resonant frequency, which hasadvantages to the typical method such as more sample r...
متن کاملMeasurement of the Earth’s Magnetic Field Vector based on zero field finding algorithm using optically pumped magnetometers
Atomic magnetometers have found widespread applications in precise measurement of the Earth’s magnetic field due to their high sensitivity. In these measurements, various methods have been utilized to compensate the Earth’s magnetic field in an unshielded environment. In this paper, we have proposed a method based on finding the minimum resonance frequency (corresponding to minimum magnetic fie...
متن کاملHigh Sensitivity Optically Pumped Quantum Magnetometer
Quantum magnetometers based on optical pumping can achieve sensitivity as high as what SQUID-based devices can attain. In this paper, we discuss the principle of operation and the optimal design of an optically pumped quantum magnetometer. The ultimate intrinsic sensitivity is calculated showing that optimal performance of the magnetometer is attained with an optical pump power of 20 μW and an ...
متن کاملAn Optically Pumped Magnetometer Working in the Light-Shift Dispersed Mz Mode
We present an optically pumped magnetometer working in a new operational mode-the light-shift dispersed Mz (LSD-Mz) mode. It is realized combining various features; (1) high power off-resonant optical pumping; (2) Mz configuration, where pumping light and magnetic field of interest are oriented parallel to each other; (3) use of small alkali metal vapor cells of identical properties in integrat...
متن کاملDesign and performance of an absolute He/Cs magnetometer
We report on the design and performance of a highly sensitive combined He/Cs magnetometer for the absolute measurement of magnetic fields. The magnetometer relies on the magnetometric detection of the free spin precession of nuclear spin polarized He gas by optically pumped cesium magnetometers. We plan to deploy this type of combined magnetometer in an experiment searching for a permanent elec...
متن کامل