Switchgrass (Panicum virgatum L.) Genotypes Differ between Coastal Sites and Inland Road Corridors in the Northeastern US
نویسندگان
چکیده
Switchgrass (Panicum virgatum L.) is a North American grass that exhibits vast genetic diversity across its geographic range. In the Northeastern US, local switchgrass populations were restricted to a narrow coastal zone before European settlement, but current populations inhabit inland road verges raising questions about their origin and genetics. These questions are important because switchgrass lines with novel traits are being cultivated as a biofuel feedstock, and gene flow could impact the genetic integrity and distribution of local populations. This study was designed to determine if: 1) switchgrass plants collected in the Long Island Sound Coastal Lowland coastal Level IV ecoregion represented local populations, and 2) switchgrass plants collected from road verges in the adjacent inland regions were most closely related to local coastal populations or switchgrass from other geographic regions. The study used 18 microsatellite markers to infer the genetic relationships between 122 collected switchgrass plants and a reference dataset consisting of 28 cultivars representing ecotypes, ploidy levels, and lineages from North America. Results showed that 84% of 88 plants collected in the coastal plants were most closely aligned with the Lowland tetraploid genetic pool. Among this group, 61 coastal plants were similar to, but distinct from, all Lowland tetraploid cultivars in the reference dataset leading to the designation of a genetic sub-population called the Southern New England Lowland Tetraploids. In contrast, 67% of 34 plants collected in road verges in the inland ecoregions were most similar to two Upland octoploid cultivars; only 24% of roadside plants were Lowland tetraploid. These results suggest that cryptic, non-local genotypes exist in road verges and that gene flow from biofuels plantations could contribute to further changes in switchgrass population genetics in the Northeast.
منابع مشابه
Carbon dioxide and water fluxes from switchgrass managed for bioenergy production
Switchgrass (Panicum virgatum L.) is an important bioenergy crop with the potential to provide a reliable supply of renewable energywhile also sequestering C in the soil. The purpose of this studywas to quantify CO2 fluxes during the establishment and early production years of a young switchgrass stand in the northeastern USA. Switchgrasswas sown in June 2004 and daily CO2 fluxesweremeasured fo...
متن کاملGenetic diversity in tetraploid switchgrass revealed by AFLP marker polymorphisms.
Switchgrass (Panicum virgatum) is a perennial warm-season grass native to North America that has been identified as a dedicated cellulosic biofuel crop. We quantified genetic diversity in tetraploid switchgrass germplasm collected at Oklahoma State University and characterized genetic relatedness among the collections from distinct regions. Fifty-six tetraploid accessions, including seven...
متن کاملAssessment of drought tolerance of 49 switchgrass (Panicum virgatum) genotypes using physiological and morphological parameters
BACKGROUND Switchgrass (Panicum virgatum L.) is a warm-season C4 grass that is a target lignocellulosic biofuel species. In many regions, drought stress is one of the major limiting factors for switchgrass growth. The objective of this study was to evaluate the drought tolerance of 49 switchgrass genotypes. The relative drought stress tolerance was determined based on a set of parameters includ...
متن کاملProtoplast isolation and transient gene expression in switchgrass, Panicum virgatum L.
Transient assay systems using protoplasts have been utilized in several plant species and are a powerful tool for rapid functional gene analysis and biochemical manipulations. A protoplast system has not been used in switchgrass (Panicum virgatum L.), even though it is a bioenergy crop that has received considerable attention. Here we report the first protocol to isolate large numbers of viable...
متن کاملPopulation genomic variation reveals roles of history, adaptation and ploidy in switchgrass
Geographic patterns of genetic variation are shaped by multiple evolutionary processes, including genetic drift, migration and natural selection. Switchgrass (Panicum virgatum L.) has strong genetic and adaptive differentiation despite life history characteristics that promote high levels of gene flow and can homogenize intraspecific differences, such as wind-pollination and self-incompatibilit...
متن کامل