Toward Precise Pulmonary Nodule Descriptors for Nodule Type Classification
نویسندگان
چکیده
A framework for nodule feature-based extraction is presented to classify lung nodules in low-dose CT slices (LDCT) into four categories: juxta, well-circumscribed, vascularized and pleural-tail, based on the extracted information. The Scale Invariant Feature Transform (SIFT) and an adaptation to Daugman's Iris Recognition algorithm are used for analysis. The SIFT descriptor results are projected to lower-dimensional subspaces using PCA and LDA. Complex Gabor wavelet nodule response obtained from an adopted Daugman Iris Recognition algorithm revealed improvements from the original Daugman binary iris code. This showed that binarized nodule responses (codes) are inadequate for classification since nodules lack texture concentration as seen in the iris, while the SIFT algorithm projected using PCA showed robustness and precision in classification.
منابع مشابه
Improved pulmonary nodule classification utilizing quantitative lung parenchyma features.
Current computer-aided diagnosis (CAD) models for determining pulmonary nodule malignancy characterize nodule shape, density, and border in computed tomography (CT) data. Analyzing the lung parenchyma surrounding the nodule has been minimally explored. We hypothesize that improved nodule classification is achievable by including features quantified from the surrounding lung tissue. To explore t...
متن کاملAutomated classification of pulmonary nodules through a retrospective analysis of conventional CT and two-phase PET images in patients undergoing biopsy
Objective(s): Positron emission tomography/computed tomography (PET/CT) examination is commonly used for the evaluation of pulmonary nodules since it provides both anatomical and functional information. However, given the dependence of this evaluation on physician’s subjective judgment, the results could be variable. The purpose of this study was to develop an automated scheme for the classific...
متن کاملThe Value of LDH Level of BAL Fluid in Differentiating Benign from Malignant Solitary Pulmonary Nodules
Background: Serum lactate dehydrogenase (LDH) concentration is an indicator for tissue injury. It may be secreted locally in many conditions. For the first time, this study was performed to investigate the value of LDH level in bronchoalveolar lavage fluid (BALF) in differentiation of benign from malignant single pulmonary nodules (SPNs) and to assess its relationship with serum LDH levels. Met...
متن کاملAutomated pulmonary nodule detection based on three-dimensional shape-based feature descriptor
Computer-aided detection (CAD) can help radiologists to detect pulmonary nodules at an early stage. In pulmonary nodule CAD systems, feature extraction is very important for describing the characteristics of nodule candidates. In this paper, we propose a novel three-dimensional shape-based feature descriptor to detect pulmonary nodules in CT scans. After lung volume segmentation, nodule candida...
متن کاملDeepLung: 3D Deep Convolutional Nets for Automated Pulmonary Nodule Detection and Classification
In this work, we present a fully automated lung CT cancer diagnosis system, DeepLung. DeepLung contains two parts, nodule detection and classification. Considering the 3D nature of lung CT data, two 3D networks are designed for the nodule detection and classification respectively. Specifically, a 3D Faster R-CNN is designed for nodule detection with a U-net-like encoder-decoder structure to eff...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention
دوره 13 Pt 3 شماره
صفحات -
تاریخ انتشار 2010