The estrogen effects on endothelial repair and mitogen-activated protein kinase activation are abolished in endothelial nitric-oxide (NO) synthase knockout mice, but not by NO synthase inhibition by N-nitro-L-arginine methyl ester.
نویسندگان
چکیده
We have previously shown that estrogen exerts a vasoprotective effect by accelerating reendothelialization after perivascular artery injury through activation of the estrogen receptor alpha. Because 17beta-estradiol (E2) is known to increase the bioavailability of nitric oxide, in this study, we used the same perivascular model to characterize the role of the endothelial nitric oxide synthase (eNOS) pathway in reendothelialization. Surprisingly, we found that the stimulatory effect of E2 on reendothelialization was not altered following pharmacological inhibition of nitric-oxide synthase enzymatic activity by N-nitro-L-arginine methyl ester, whereas it was abolished in eNOS-deficient (eNOS-/-) mice. This discrepancy between eNOS gene inactivation and the pharmacological inhibition of eNOS was confirmed in a classical model of endovascular injury. When assessing the involvement of eNOS in short-term membrane-associated signaling events induced by E2, we found that E2 stimulated phosphorylation of extracellular signal-regulated kinase 1/2 in isolated perfused carotid arteries from wild-type mice in the absence or presence of N-nitro-l-arginine methyl ester, whereas this stimulation was abolished in carotid arteries from eNOS-/- mice. Similar results were obtained in primary cultures of mouse aortic endothelial cells. These data reveal an original and unexpected role of eNOS, in which its presence but not its enzymatic activity appears to be a determinant for estrogen signaling in the endothelium. The consequences of this novel function of eNOS with respect to vascular diseases should be explored.
منابع مشابه
Effect of Neutrophils on Nitric Oxide Production from Stimulated Macrophages
Background: During the initial phase of an infection, there is an upregulation of inducible nitric oxide synthase in the macrophages for the production of nitric oxide. This is followed by the recruitment of polymorphonuclear leukocytes (neutrophils) which release arginase. Arginase competes with inducible nitric oxide synthase for a common substrate L-arginine. Objective: To investigate whethe...
متن کاملEXPRESSION OF INDUCIBLE NITRIC OXIDE SYNTHASE GENE (iNOS) STIMULATED BY HYDROGEN PEROXIDE IN HUMAN ENDOTHELIAL CELLS
Inducible nitric oxide synthase (iNOS) gene expresses a calcium calmudolin-independent enzyme which can catalyse NO production from L-arginine. The induction of iNOS activity has been demonstrated in a wide variety of cell types under stimulation with cytokines and lipopoly saccharide (LPS). Previous studies indicated that all nitric oxide synthases (NOS) activated in human umbilical vein endot...
متن کاملRapid Stimulation of L-Arginine Transport by D-Glucose Involves p42/44 and Nitric Oxide in Human Umbilical Vein Endothelium
D-Glucose infusion and gestational diabetes induce vasodilatation in humans and increase L-arginine transport and nitric oxide (NO) synthesis in human umbilical vein endothelial cells. High D-glucose (25 mmol/L, 2 minutes) induced membrane hyperpolarization and an increase of L-arginine transport (Vmax 6.1 0.7 versus 4.4 0.1 pmol/ g protein per minute) with no change in transport affinity (Km 1...
متن کاملTelmisartan inhibits vasoconstriction via PPARγ-dependent expression and activation of endothelial nitric oxide synthase.
AIMS Telmisartan activates peroxisome proliferator-activated receptor-γ (PPARγ) in addition to serving as an angiotensin II type 1 receptor (AT(1)R) blocker. The PPARγ activity of telmisartan on resistance arteries has remained largely unknown. The present study investigated the hypothesis that telmisartan inhibited vascular tension in mouse mesenteric resistance arteries, which was attributed ...
متن کاملRapid stimulation of L-arginine transport by D-glucose involves p42/44(mapk) and nitric oxide in human umbilical vein endothelium.
D-glucose infusion and gestational diabetes induce vasodilatation in humans and increase L-arginine transport and nitric oxide (NO) synthesis in human umbilical vein endothelial cells. High D-glucose (25 mmol/L, 2 minutes) induced membrane hyperpolarization and an increase of L-arginine transport (V(max) 6.1+/-0.7 versus 4.4+/-0.1 pmol/ microg protein per minute) with no change in transport aff...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The American journal of pathology
دوره 172 3 شماره
صفحات -
تاریخ انتشار 2008